WWF Peer Reviewed Publications

Recent Publications

2020

Much recent attention has focused on the potential of trees and forests to mitigate ongoing climate change by acting as sinks for carbon. Anderegg et al. review the growing evidence that forests' climate mitigation potential is increasingly at risk from a range of adversities that limit forest growth and health. These include physical factors such as drought and fire and biotic factors, including the depredations of insect herbivores and fungal pathogens. Full assessment and quantification of these risks, which themselves are influenced by climate, is key to achieving science-based policy outcomes for effective land and forest management.

Palm oil-based biodiesel in Indonesia is facing critical issue with regard to its sustainability status in both upstream and downstream sides. International market of palm oil keeps questioning this sustainability standard of Indonesia oil palm. Three interrelated dimensions of sustainability should be fulfilled only if a product to gain growing market acceptance internationally, i.e. economically profitable, ecologically sound and socially acceptable. To determine the sustainability of Indonesia’s palm oil-based biodiesel, this paper pays attention in particular to measuring sustainability status of biodiesel in the upstream to downstream side along its supply chain. The analysis of the sustainability of palm oil-based biodiesel in Indonesia is done thoroughly all related activities on the upstream (agricultural-cultivation activities) up to the downstream (manufacturing activities) side. A rap-bioenergy approach, which included the use of MDS (multidimensional scaling) analyses is applied in the analysis. The results of these analyses show that palm oil-based biodiesel in Indonesia is facing serious sustainability status. Among other three parameters, ecological aspect/parameter is a very serious one. This is especially the case for cultivation activities. This paper concludes that if Indonesia desires international markets to accept the existence of palm oil-based biodiesel, then improvements in ecological aspect should be priority.

The fast-growing palm oil economy has stimulated a significant expansion of oil palm plantations in Indonesia. The uncontrolled development of large oil palm plantations has raised complex socio-ecological issues, including changes of ecological landscapes, organization of production, and farming household livelihood systems. For two oil palm villages with different ecological settings, this article describes changes in land cover, how production is organized, and the income structure changes due to rural economic development. The research used survey approaches and analysis of earth maps, assisted by data obtained from satellite imagery. A qualitative approach was also used to support a survey via in-depth interviews. The research was carried out in two oil palm economy-based villages of Kutai Kartanegara District, of the Province of East Kalimantan of Indonesia. The first village is located very close to the center of regional administration and has evolved into a non-farming economy. In contrast, the other village is more isolated and solely relies on farming activities. The study found that changes of land cover caused by oil palm expansion could be categorized into two types, concentrated and spotted, following the influence of oil palm investment activities. It was also found that organization of the production of most smallholders existed in two types of arrangements, partial and total integration of production. From the perspective of livelihood, two different types of income structures emerged, diversified and uniform. This article concludes that responses of smallholders to palm oil spread varied depending on the ecological setting, the existence of the already established plantation economy in the region, the capacity of the smallholders to diversify economic activities based on palm oil, and the exposure to external economic activities.

The health of coastal human communities and marine ecosystems are at risk from a host of anthropogenic stressors, in particular, climate change. Because ecological health and human well-being are inextricably connected, effective and positive responses to current risks require multidisciplinary solutions. Yet, the complexity of coupled social–ecological systems has left many potential solutions unidentified or insufficiently explored. The urgent need to achieve positive social and ecological outcomes across local and global scales necessitates rapid and targeted multidisciplinary research to identify solutions that have the greatest chance of promoting benefits for both people and nature. To address these challenges, we conducted a forecasting exercise with a diverse, multidisciplinary team to identify priority research questions needed to promote sustainable and just marine social–ecological systems now and into the future, within the context of climate change and population growth. In contrast to the traditional reactive cycle of science and management, we aimed to generate questions that focus on what we need to know, before we need to know it. Participants were presented with the question, "If we were managing oceans in 2050 and looking back, what research, primary or synthetic, would wish we had invested in today?" We first identified major social and ecological events over the past 60 years that shaped current human relationships with coasts and oceans. We then used a modified Delphi approach to identify nine priority research areas and 46 questions focused on increasing sustainability and well-being in marine social–ecological systems. The research areas we identified include relationships between ecological and human health, access to resources, equity, governance, economics, resilience, and technology. Most questions require increased collaboration across traditionally distinct disciplines and sectors for successful study and implementation. By identifying these questions, we hope to facilitate the discourse, research, and policies needed to rapidly promote healthy marine ecosystems and the human communities that depend upon them.

Climate change is expected to dramatically alter the distribution of many marine megafauna, impacting the people and economies that depend upon them. We build on the recent literature by developing a framework to describe the effects these changes will have on marine megafauna. With the goal to assist policymakers and grass roots organizers, we identify three illustrative pathways by which climate change drives these range shifts: (1) effects on habitat and shelter, (2) impacts on reproduction and disease, and (3) changing distribution of sources of food. We examine non-climate factors that may constrain or enable megafauna to adapt, creating winners and losers both for the species and the people dependent upon them. Finally, we comment on what management strategies exist at international and local scales that could help mitigate these impacts of climate change so that we, as a global community, can ensure that marine megafauna and people can best co-exist in a changing world.

The environmental costs of human activities (Steffen et al., 2007) and the social and psychological costs of overconsumption and materialism (Dittmar et al., 2014) underscore the importance of identifying whether and how individuals can reduce their consumption while improving their well-being. Interest in this ‘double dividend’ (Alfredsson et al., 2018; Jackson, 2008) was sparked by evidence of a threshold beyond which additional GDP or household income has little impact on well-being, happiness or life satisfaction (Easterlin et al., 2010; Kahneman and Deaton, 2010; though see Pouwels et al., 2008 for evidence that the positive effect of income on well-being may be underestimated). This literature was coupled with evidence that materialist values and the desire for higher income are associated with lower well-being and life satisfaction (Diener and Seligman, 2004; Kasser, 2017) to suggest that sustainable consumption may not require sacrifice and may, in fact, be rewarding.

Recent studies have explored the double dividend at the macro-level by measuring the environmental efficiency of well-being (EWEB) (Dietz et al., 2009; Knight and Rosa, 2011), or carbon intensity of well-being (Jorgenson and Givens, 2015) to identify nations with high levels of well-being despite relatively small environmental impacts. Other studies have measured EWEB at the household (Ambrey and Daniels, 2017) or individual level (Claborn and Brooks, 2019), explored correlations between subjective well-being and carbon emissions (Andersson et al., 2014; Verhofstadt et al., 2016), and examined whether involvement in voluntary simplicity movements is associated with higher life satisfaction (Alexander and Ussher, 2012; Rich et al., 2017).

These and other individual- or household-level studies have found mixed evidence for the double-dividend (see also Verhofstadt et al., 2016; Vita et al., 2019; Schmitt et al., 2018), which suggests that double-dividend relationships are complex, and limitations in existing research may have made it difficult to detect specific tradeoffs and synergies between sustainable consumption and well-being. More specifically, existing studies have tended to use aggregate measures of consumption (e.g., transportation and shelter) and/or unidimensional measures of well-being (e.g., one-item measurement) and have generally not accounted for how local socio-cultural context, such as norms and culture, may shape the relationship between sustainable consumption and well-being.

With this study, we address the above shortcomings and examine whether and which sustainable consumption behaviors are associated with higher well-being, and whether these relationships depend on one's socio-cultural context. We sample two neighborhoods to assess differences in local contextual factors. We also examine whether residents' income, rather than neighborhood context, influences the relationship between sustainable consumption and well-being. We define sustainable consumption as behaviors that contribute to a smaller ecological footprint relative to more environmentally impactful alternatives. Included in this conceptualization are “curtailment” behaviors (e.g. purchasing fewer material goods like clothing or electronics; Karlin et al., 2014), “efficiency” behaviors (e.g. driving a more fuel-efficient vehicle), and behaviors intended to reduce waste (e.g. recycling paper and plastic).

Facing public concern over costs related to top-predator reintroductions and conservation, ecosystem services such as ecotourism are often used to evoke benefits that outweigh or offset those costs. Quantifying these benefits using rigorous scientific methods can provide confidence to policymakers and other stakeholders that predators can in fact deliver positive outcomes to people living alongside them. The evaluation of these benefits is often anecdotal or qualitative, however, and empirical quantifications are rare.

Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.

Healthy rivers provide a broad range of services that benefit economies and communities but the concepts of water security, as well as water management in practice, have tended to focus on a narrow set of those services. Accomplishing the diverse objectives bundled under water security—including water quantity and quality, linkages with food security, risk management and ecosystem conservation—will require a more holistic valuing of rivers’ services coupled with policies and mechanisms to maintain and restore those values. Rivers have typically been viewed as sources of water to support irrigation, water supply or hydropower. While the water that rivers provide often has immense value to economies—and thus it is this role where rivers are well represented within frameworks for water security—rivers provide a diverse range of other services that encompass, but extend beyond, water as a resource that can be defined by volume or quality. These services can also produce vital benefits for economies and communities and they are generated by rivers as complex biophysical systems, not just as conduits for delivering water. Examples of these services include fisheries, floodplains that reduce flood risk, sediment delivery to deltas, and components of the channel network that regulate water quantity and quality. Concepts such as natural capital and ecosystem services are intended to better value these services, however the valuations produced are often not effectively integrated into decisions or management. Although rigorous science provides an important foundation for embedding the value of rivers within water security, translating those values into management and policy will require the communication of river values into terms and numbers that matter to key audiences and the assembly of coalitions to translate value into action.

Palm oil makes a significant contribution to the economies of Indonesia and Malaysia through private corporations, state-owned companies and smallholders, with the two countries supplying 85% of the global palm oil. Indonesia has 14 million hectares (ha) of oil palm; its palm oil exports were valued at USD 23 billion in 2017 and USD 21 billion in 2018. Both domestic and international communities, particularly the European Union (EU), have raised concerns about its sustainability and impact on forest conservation. For example, the European Parliament in 2017 issued a resolution to restrict the ability of EU countries to count palm oil-based biodiesel imports toward their renewable 2030 energy targets. This paper describes palm oil value chains in Indonesia at the national level, using value chain analysis and system dynamics modeling. The model is used to understand how the moratorium, peatland conservation, agrarian reform, and the EU biodiesel ban affect plantation expansion and production, employment, CO2 emissions, smallholder incomes, the private sector, and government. The model provides scenarios to make Indonesian palm oil more sustainable through intensification, no-deforestation, and no-peat strategies, as well as through land swapping. There are trade-offs between economic development and environmental conservation, but win-win solutions are available. Scenarios that build synergies between Indonesian palm oil development and forest conservation can help guide the new frontiers of oil palm development in Asia, South America, and Africa.

Collisions between ships and whales raise environmental, safety, and economic concerns. The management of whale-ship collisions, however, lacks a holistic approach, unlike the management of other types of wildlife-vehicle collisions, which have been more standardized for several years now. In particular, safety and economic factors are routinely omitted in the assessment of proposed mitigation solutions to ship strikes, possibly leading to under-compliance and a lack of acceptance from the stakeholders. In this study, we estimate the probability of ship damage due to a whale-ship collision. While the probability of damage is low, the costs could be important, suggesting that property damages are significant enough to be taken into consideration when assessing solutions. Lessons learned from other types of wildlife-vehicle collisions suggest that the whale-ship collision should be managed as wildlife-aircraft collisions. For several years, the International Civil Aviation Organization (ICAO) manages collisions between aircrafts and wildlife at the international level. We advocate that its United Nations counterpart, namely the International Maritime Organization (IMO), get more involved in the whale-ship collision management. Further research is needed to more precisely quantify the costs incurred to ships from damages caused by whale-ship collisions.

Despite their limited spatial extent, freshwater ecosystems host remarkable biodiversity, including one-third of all vertebrate species. This biodiversity is declining dramatically: Globally, wetlands are vanishing three times faster than forests, and freshwater vertebrate populations have fallen more than twice as steeply as terrestrial or marine populations. Threats to freshwater biodiversity are well documented but coordinated action to reverse the decline is lacking. We present an Emergency Recovery Plan to bend the curve of freshwater biodiversity loss. Priority actions include accelerating implementation of environmental flows; improving water quality; protecting and restoring critical habitats; managing the exploitation of freshwater ecosystem resources, especially species and riverine aggregates; preventing and controlling nonnative species invasions; and safeguarding and restoring river connectivity. We recommend adjustments to targets and indicators for the Convention on Biological Diversity and the Sustainable Development Goals and roles for national and international state and nonstate actors.

2019

1. This study provides evidence that a heliophilic butterfly, the Glanville fritillary (Melitaea cinxia) has adapted differently to environmental variation across latitudes and elevations.

2. In cool air, basking M. cinxia orient themselves perpendicular to the sun's rays to gain heat and take off. During flight, solar heating is reduced because orientation perpendicular to the sun is no longer possible and convective cooling occurs. Consequently, M. cinxia have been shown to suffer net heat loss in flight, even in full sunshine. When flight duration is restricted in this way, the takeoff temperature becomes an important thermal adaptation.

3. Using a thermal imaging camera, takeoff temperatures were measured in experimental butterflies. Butterflies from the northern range limit in Finland took flight at slightly hotter temperatures than butterflies from the southern limit in Spain, and much hotter than butterflies from the elevational limit (1900-2300 m) in the French Alps. Butterflies from low-elevation populations in southern France also took off much hotter than did the nearby Alpine population.

4. These results suggest that the influence of elevation is different from that of latitude in more respects than ambient temperature. Values of solar irradiance in the butterflies' flight season in each region show that insects from the coolest habitats, Finland and the Alps, experienced similar solar irradiance during basking, but that Finns experienced much lower irradiance in flight. This difference may have favored Finnish butterflies evolving higher takeoff temperatures than Alpine butterflies that also flew in cool air but benefited from more intense radiant energy after takeoff.

Wildlife is an essential component of all ecosystems. Most places in the globe do not have local, timely information on which species are present or how their populations are changing. With the arrival of new technologies, camera traps have become a popular way to collect wildlife data. However, data collection has increased at a much faster rate than the development of tools to manage, process and analyse these data. Without these tools, wildlife managers and other stakeholders have little information to effectively manage, understand and monitor wildlife populations. We identify four barriers that are hindering the widespread use of camera trap data for conservation. We propose specific solutions to remove these barriers integrated in a modern technology platform called Wildlife Insights. We present an architecture for this platform and describe its main components. We recognize and discuss the potential risks of publishing shared biodiversity data and a framework to mitigate those risks. Finally, we discuss a strategy to ensure platforms like Wildlife Insights are sustainable and have an enduring impact on the conservation of wildlife.

A variety of policy interventions from public authorities and private companies attempt to reduce deforestation in private forest concessions. These include fines for illegal deforestation and market incentives for forest management practices that meet sustainability standards. While some studies have found significant differences in forest outcomes between concessions that participate in sustainability commitments and those that do not, others have found small or inconclusive differences. We contribute to this literature by examining all privately allocated concessions in the Peruvian Amazon to determine whether sustainability commitments correspond with lower deforestation rates. Conversely, we examine whether fines correspond with higher deforestation rates, a question for which fewer analyses have been published. Using matching methods, we do not find significantly different deforestation rates between control groups and logging concessions with third party environmental certification. We also do not see significant differences in deforestation rates in petroleum concessions managed by companies who have made sustainability commitments. Regarding punitive fines, we do not find significant differences in deforestation rates between control groups and logging concessions with fines levied. The same holds true for fines levied in brazil nut concessions. Potential explanations for these findings include insufficient monitoring or inadequate stringency for sustainability commitments, and insufficiently punitive fines or low enforcement levels.

Stabilizing Earth's climate and limiting temperature increase to well below 2°C per the Paris Agreement requires a dramatic uptick in the rate of progress on reducing greenhouse gas (GHG) emissions. Natural climate solutions (NCS) can be a substantial contributor, while also providing valuable cobenefits for people and ecosystems. Although analyses of NCS have some differences in the GHG fluxes they consider, all include emissions sources (such as deforestation, land-use change, and agricultural practices), emissions sinks (such as reforestation and restoring degraded lands), and non–carbon dioxide (CO2) agricultural emissions (such as methane from livestock). Some of us have contributed to among the most optimistic assessments of the potential of NCS (1), whereas others have been more pessimistic (2, 3). But one thing on which we agree, and which technical literature generally acknowledges, is that the benefits of NCS do not decrease the imperative for mitigation from the energy and industrial sectors (2, 4, 5). Yet this point sometimes gets lost in public-facing conversations [for example, are forests "our best weapon for fighting carbon emissions" or, more realistically, just one "piece of the puzzle"? (6)]. Strategies for incorporating NCS with energy and industrial mitigation in the climate portfolio should not be "either/or" but "yes, and."

The Intergovernmental Panel on Climate Change's (IPCC) special report on global warming of 1.5 degrees Celsius (°C) makes clear that most scenarios (90%) that hold warming to 1.5°C by 2100 include an overshoot, or a period in which the temperature increase exceeds 1.5°C before declining to the end-of-century 1.5°C goal (IPCC 2018). An overshoot is also possible for 2°C scenarios, given the lack of ambition in existing mitigation commitments. Current conservation policy and planning does not adequately account for the high likelihood of a temperature overshoot in a 1.5°C scenario, but the impacts of an overshoot on conservation may be large. Efforts to avoid an overshoot must be increased through more ambitious mitigation commitments and a greater focus on peak warming rather than end-of-century outcomes. Simultaneously, conservation planning should account for such impacts by anticipating more dynamic systems that carry greater uncertainties and potentially irreversible changes that may persist even as temperatures peak and decline.

The Caribbean and Western Atlantic region hosts one of the world's most diverse geopolitical regions and a unique marine biota distinct from tropical seas in the Pacific and Indian Oceans. While this region varies in human population density, GDP and wealth, coral reefs, and their associated ecosystem services, are central to people's livelihoods. Unfortunately, the region's reefs have experienced extensive degradation over the last several decades. This degradation has been attributed to a combination of disease, overfishing, and multiple pressures from other human activities. Furthermore, the Caribbean region has experienced rapid ocean warming and acidification as a result of climate change that will continue and accelerate throughout the 21st century. It is evident that these changes will pose increasing threats to Caribbean reefs unless imminent actions are taken at the local, regional and global scale. Active management is required to sustain Caribbean reefs and increase their resilience to recover from acute stress events. Here, we propose local and regional solutions to halt and reverse Caribbean coral reef degradation under ongoing ocean warming and acidification. Because the Caribbean has already experienced high coral reef degradation, we suggest that this region may be suitable for more aggressive interventions that might not be suitable for other regions. Solutions with direct ecological benefits highlighted here build on existing knowledge of factors that can contribute to reef restoration and increased resilience in the Caribbean: (1) management of water quality, (2) reduction of unsustainable fishing practices, (3) application of ecological engineering, and (4) implementing marine spatial planning. Complementary socioeconomic and governance solutions include: (1) increasing communication and leveraging resources through the establishment of a regional reef secretariat, (2) incorporating reef health and sustainability goals into the blue economy plans for the region, and (3) initiating a reef labeling program to incentivize corporate partnerships for reef restoration and protection to sustain overall reef health in the region.

The expansion of oil palm plantations in Papua province, Indonesia, involves the conversion of forests, among other land types in the landscapes, which are a source of clan members' livelihoods. The way in which this expansion occurs makes it necessary to understand the factors associated with why companies look for frontier lands and what externalities are generated during both the land acquisition and plantation development periods. Using a spatial analysis of the concession areas, along with data from household surveys of each clan from the Auyu, Mandobo, and Marind tribes who release land to companies, we find that investors are motivated to profit from timber harvested from the clearing of lands for plantations, activity that is facilitated by the local government. Land acquisition and plantation development have resulted in externalities to indigenous landowners in the form of time and money lost in a series of meetings and consultations involving clan members and traditional elders. Other externalities include the reduced welfare of people due to loss of livelihoods, and impacts on food security.

The signing of the Paris climate agreement and sustainable development goals demonstrated an international commitment to halting climate change, increasing energy access, and maintaining biodiversity. Successful implementation requires rapidly expanding renewable energy development, which has a large land footprint and can conflict with maintaining natural lands. To quantify the potential to mediate this land conflict, we converted emission reduction commitments submitted as part of the Paris agreement into actionable energy targets, and assessed whether they can be met by developing renewables on converted lands and waters of lower biodiversity and carbon value. The world has 19 times the required energy targets on converted lands, and most countries, including the top ten emitters, can meet the Paris agreement goals. Furthermore, regions (e.g. Africa) that will experience substantial population growth and that currently have limited energy infrastructure can meet their Paris agreement and future energy targets by developing renewable energy on already converted lands. Guiding renewable energy development to converted lands presents opportunities for sustainable development, but also requires incentives and proactive planning to ensure expansion does not exacerbate other environmental challenges.

Land-use changes and the expansion of protected areas (PAs) have amplified the interaction between protected and unprotected areas worldwide. In this context, 'interface processes' (human–nature and cross-boundary interactions inside and around PAs) have become central to issues around the conservation of biodiversity and ecosystem services. This scientific literature review aimed to explore current knowledge and research gaps on interface processes regarding terrestrial PAs. At first, 3,515 references related to the topic were extracted through a standardized search on the Web of Science and analyzed with scientometric techniques. Next, a full-text analysis was conducted on a sample of 240 research papers. A keyword analysis revealed a wide diversity of research topics, from 'pure' ecology to sociopolitical research. We found a bias in the geographical distribution of research, with half the papers focusing on eight countries. Additionally, we found that the spatial extent of cross-boundary interactions was rarely assessed, preventing any clear delimitation of PA interactive zones. In the 240 research papers we scanned, we identified 403 processes that were studied. The ecological effects of PAs were well documented and appeared to be positive overall. In contrast, the effects of PAs on local communities were understudied and, according to the literature focusing on these, were very variable according to local contexts. Our findings highlight key research advances on interface processes, especially regarding the ecological outcomes of PAs, the influence of human activities on biodiversity, and PA governance issues. In contrast, main knowledge gaps concern the spatial extent of interactive zones, as well as the interactions between local people and conservation actions and how to promote synergies between them. While the review was limited to terrestrial PAs, its findings allow us to propose research priorities for tackling environmental and socioeconomic challenges in the face of a rapidly changing world.

Winter can be a limiting time of year for many temperate species, who must access depressed prey resources to meet energetic demands. The swift fox (Vulpes velox (Say, 1823)) was extirpated from Canada and Montana (USA) by 1969, but was reintroduced in the 1980s to Canada, and subsequently spread into northern Montana. Swift foxes in this region are at the current northern range edge where winter conditions are harsher and persist longer than in their southern range (i.e., Colorado (USA) to Texas (USA)). We collected fine-scale locational data from swift foxes fitted with global positioning system collars to examine movement and resource-use patterns during winter of 2016–2017 in northeastern Montana. Our results suggest that swift foxes displayed three distinct movement patterns (i.e., resting, foraging, and travelling) during the winter. Distance to road decreased relative probability of use by 39%–46% per kilometre across all movement states and individuals, whereas the influence of topographic roughness and distance to crop field varied among movement states and individuals. Overall, while our findings are based on data from three individuals, our study suggests that across movement states during the critical winter season, swift foxes are likely using topography and areas near roads to increase their ability to detect predators.

Despite the plethora of discourse about how sustainable development should be pursued, the production of agricultural commodities is held responsible for driving c. 80% of global deforestation. Partially as a response, the private sector has made commitments to eliminate deforestation, but it is not yet clear what factors these commitments should take into account to effectively halt deforestation while also contributing to broader sustainable development. In the context of private sector commitments to zero-deforestation, this study characterizes the perceptions of different types of stakeholders along the cocoa and chocolate supply chain in order to determine the main challenges and solutions to encourage sustainable production. The main purpose is to understand the key factors that could facilitate a transition to a more sustainable supply while harmonizing the multiple actors’ interests. A qualitative thematic analysis of perceptions was conducted based on responses from 59 interviews with different stakeholders along the cocoa and chocolate supply chain in six key producing and consuming countries. Thematic analysis of the responses revealed six main themes: (1) make better use of policies, regulations and markets to help promote sustainability; (2) improve information and data (e.g., impacts of climate change on cocoa) to inform sound interventions; (3) focus on the landscape rather than the farm-level alone and improve integration of supply chain actors; (4) promote better coordination between stakeholders and initiatives (e.g., development assistance projects and corporate sustainability efforts); (5) focus on interdependent relationships between social, environmental and economic dimensions to achieve sustainable development; and (6) engage with the private sector. The study shows the importance of identifying different stakeholder priorities in order to design solutions that accommodate multiple interests. It also emphasizes the need to improve coordination and communication between stakeholders and instruments in order to address the three different dimensions of sustainability in a synergistic manner, considering the interactions from production of raw material to end consumer.

Despite several efforts to quantify the effectiveness of forest certification in developing sustainable use of forest resources, there is little evidence that certified forests are more effective in conserving fauna than non-certified managed forest. To evaluate the impact of forest certification on the fauna, we compared the biodiversity in reference sites (n = 23), Forest Stewardship Council (FSC) certified management sites (n = 24) and non-FSC management sites (n = 20) in the Tahuamanu region of Peru, during the dry season of 2017. Specifically, we determined if the acoustic space used (ASU), soundscapes composition, and the bird richness and composition significantly varied among the three management types. Variation in ASU was best explained by management type and mean ASU in the FSC sites was significantly greater than the reference and non-FSC sites, possibly suggesting greater richness of acoustically active species. An ordination analysis of the soundscapes showed that there was a significant difference among the three management types. There was greater dissimilarity in soundscape composition between the FSC and non-FSC sites, and greater overlap between FSC and reference sites. Bird identifications resulted in 11,300 detections of 226 bird species. Bird species richness and composition were not significantly different among the management types, indicating, in this context, that birds may not be the best indicators of different management strategies. The weak discrimination by the bird community is likely due to their dispersal ability, undisturbed primary forest matrix, and the occurrence of bamboo patches. The differences in ASU among the management types were most likely due to differences in acoustically active insects, which may be more sensitive to changes in microhabitat differences. Our findings correspond with the conclusions of other studies that certified forests can maintain levels of fauna biodiversity similar to those of undisturbed primary forest in the Amazon region.

The paper assesses the effects of public innovation initiated by demands from communities in the northern Bolivian Amazon to revise forest regulations and policies. Bolivia enacted wide-reaching land and forest reforms in the mid-1990s, but these reforms were insufficient to tackle competing claims on forests and exclusion of local forest users from benefiting from timber production. Pressures by forest communities resulted in significant adjustments in regulations and policies, and the main driver was social pressure from communities as well as their representatives. The adjustments have allowed communal local practices, which were previously illegal, to become legal. They have allowed communities access to timber markets, improve incomes, and enhanced compliance with timber regulations.

A key question for sustainability science is how to generate higher well-being by, or despite, reducing personal consumption – an outcome known as the "double dividend" (Alfredsson et al., 2018; Jackson, 2005). The idea of the double dividend originated from studies suggesting that, beyond a certain level, increases in GDP or income have little impact on well-being, happiness, or life satisfaction (Costanza et al., 2009; Easterlin et al., 2009; Kahneman and Deaton, 2010; Layard, 2006). Coupled with evidence of environmental degradation associated with economic growth and consumption (Steffen et al., 2007), these studies led scholars to explore how to increase well-being in a more environmentally responsible way.

Since the 1990s, the Intergovernmental Panel on Climate Change (IPCC) has used global assessments of vulnerability to inform investment and action against the effects of climate change. Beyond the IPCC, others have undertaken global assessments to understand the vulnerability of coastal areas to climate change. Eight global vulnerability assessments are compared to understand similarities and differences in their results and the metrics used to construct a vulnerability index. Variations in objectives, conceptualizations of vulnerability, operationalization of the concepts, scope and depth of data drawn upon lead to contradictory rankings of priority areas for climate action between assessments. The increased complexity and scope of indicators make it difficult to untangle the root causes of such differences in rankings. It is also difficult to identify the degree to which climate change influences vulnerability rankings compared to other factors such as local environmental conditions and the capacity of populations to deal with environmental change. The way to undertake global assessments needs to be reshaped to better inform planning of international development along different objectives. Global level assessments need to be simplified and harmonized to better isolate the impact of climate change specific drivers. Decision-makers would make better use of such global assessments as scoping studies rather than expect comprehensive and robust priorities for investment. Such scoping studies can help target locations where supplementary, in-depth local analyses need to be conducted. At the local level, the possibility to collect context-specific information, particularly on adaptive capacity, allows the robust assessment of vulnerability.

The functional application of sUAS is rapidly becoming a valuable tool for wildlife conservation. sUAS offers researchers and wildlife managers the ability to determine species distribution, population density, status and trend monitoring, species presence or absence, and habitat classification (Christie et al. 2016; Linchant et al. 2015; Mulero-Pázmány et al. 2015). These efforts are especially valuable in remote or inaccessible areas when studying imperiled habitats or species and over large expanses of land that is time consuming and expensive for pedestrian surveys (van Gemert et al. 2015). This chapter provides a case study for using sUAS for a black-footed ferret (Mustela nigripes) habitat assessment based on the spatial distribution and population density of its primary prey species – the prairie dog (Cynomys spp.). In this study, automated feature extraction of individual prairie dog burrows from small Unmanned Aircraft Systems (sUAS) multispectral imagery provided assessments of prairie dog colony size and population density. Based on counts collected by ground survey and through manually digitized burrow counts at 27 plot sites, automated feature extraction using sUAS imagery provided a novel approach to efficiently collect accurate extent and density metrics to assess and monitor black-footed ferret habitat. The benefits of sUAS versus traditional on-the-ground biological surveys are to minimize environmental/behavioral impact on prairie dogs, offer a less time-consuming survey option, reduce count error and bias, provide the ability to cover larger areas, and conduct more frequent repeat surveys. sUAS can explore other potential advantages such as the detailed assessment of vegetation species composition and structure with multispectral and advanced sensors such as hyperspectral and LiDAR.

Changes in climate and land use are modifying biodiversity worldwide. Yet it remains unclear how both drivers interact to structure communities and determine patterns in taxonomic, phylogenetic and functional diversity at local scales. We focused on bird diversity and asked: how do precipitation and forest cover gradients interactively structure these elements of avian diversity?

1. The functional trait diversity of species assemblages can predict the provision of ecosystem services such as pollination and carbon sequestration, but it is unclear whether the same trait-based framework can be applied to identify the factors that underpin cultural ecosystem services and disservices. 2. To explore the relationship between traits and the contribution of species to cultural ecosystem services and disservices, we conducted 404 questionnaire surveys with birdwatchers and local residents in Guanacaste, Costa Rica. 3. We used an information–theoretic approach to identify which of 20 functional traits for 199 Costa Rican bird species best predicted their cultural ecosystem service scores related to birdwatching, acoustic aesthetics, education and local identity, as well as disservices (e.g. harm to crops). 4. We found that diet was the most important variable explaining perceptions of cultural ecosystem service and disservice providers. Aesthetic traits such as plumage colour and pattern were important in explaining birdwatching scores. We also found people have a high affinity for forest-affiliated birds. 5. The insight that functional traits can explain variation among cultural perspectives on values derived from birds offers a first step towards a trait-based system for understanding the species attributes that underpin cultural ecosystem services and disservices.

Despite the great cultural and economic benefits associated with birdwatching and other bird-related cultural ecosystem services (CES), little is known about the bird-related CES and disservices perceived by people, and how they differ across stakeholders and species. The goal of this study was to explore CES and disservices across three stakeholder groups in Northwestern Costa Rica. We conducted surveys (n=404 total) in which we presented farmers (n=140), urbanites (n=149), and birdwatchers (n=115) with illustrations and songs of bird species and collected participants’ ratings on items designed to measure multiple CES and disservices. We found bird-related CES and disservices were perceived as six different categories: identity, bequest, education, birdwatching, acoustic aesthetic, and disservices. The three stakeholder groups expressed varying preferences across services, disservices, and species. Specifically, birdwatchers ranked species higher in terms of their education scores and lower in disservices scores compared to the other two groups, whereas farmers scored species higher on identity scores compared to the other two groups. Farmers and urbanites had remarkably similar perceptions towards birds in general, but differed from birdwatchers. Our approach represents a novel method for assessing CES and disservices associated with species that can be adapted and modified for different taxa and multiple geographical contexts.

Selective logging causes at least half of the emissions from tropical forest degradation. Reduced-impact logging for climate (RIL-C) is proposed as a way to maintain timber production while minimizing forest damage. Here we synthesize data from 61 coordinated field-based surveys of logging impacts in seven countries across the tropics. We estimate that tropical selective logging emitted 834 Tg CO2 in 2015, 6% of total tropical greenhouse gas emissions. Felling, hauling, and skidding caused 59%, 31%, and 10% of these emissions, respectively. We suggest that RIL-C incentive programs consider a feasible target carbon impact factor of 2.3 Mg emitted per Mg of timber extracted. Operational modifications are needed to achieve this target, such as reduced wood waste, narrower haul roads, and lower impact skidding equipment. Full implementation would reduce logging emissions by 44% (366 Tg CO2 year-1) and deliver 4% of the nationally determined contributions to the Paris Climate Agreement from tropical countries, while maintaining timber supplies.

Gear restrictions are an important management tool in small-scale tropical fisheries, improving sustainability and building resilience to climate change. Yet to identify the management challenges and complete footprint of individual gears, a broader systems approach is required that integrates ecological, economic and social sciences. Here we apply this approach to artisanal fish fences, intensively used across three oceans, to identify a previously underrecognized gear requiring urgent management attention. A longitudinal case study shows increased effort matched with large declines in catch success and corresponding reef fish abundance. We find fish fences to disrupt vital ecological connectivity, exploit &rt; 500 species with high juvenile removal, and directly damage seagrass ecosystems with cascading impacts on connected coral reefs and mangroves. As semi-permanent structures in otherwise open-access fisheries, they create social conflict by assuming unofficial and unregulated property rights, while their unique high-investment-low-effort nature removes traditional economic and social barriers to overfishing.

In 2015, the UN adopted 17 Sustainable Development Goals (SDGs), aiming to "protect the planet from degradation...so that it can support the needs of the present and future generations". Through the SDGs, the UN recognises that conservation directly supports human health and wellbeing by providing goods like water and fibre, and global public goods like habitat for species and mitigation of climate change. Although trade-offs can indeed arise between conservation and economic development, the Rockefeller Foundation–Lancet Commission on planetary health states unequivocally that "the environment has been the foundation of human flourishing", suggesting that if environmental degradation persists then ongoing improvements in human health are likely to be reversed.

Calls for coral reef restoration are increasing amidst continued declines, yet we know little about long-term outcomes and conditions that lead to successful coral recovery. Here, we report on one of the longest monitoring studies following 16 years of large-scale, "low-tech" experimental reef rehabilitation on rubble fields created by chronic blast fishing in Komodo National Park, Indonesia. After blast fishing had stopped, in the absence of rehabilitation, hard coral cover in rubble fields remained about 3% from 1999 to 2016, but on rehabilitation treatments, cover increased from 0% in 2002 to 44.5% (± 21.9% SD) in 2016. Coral cover varied among sites and treatments (ranging from <5 to &rt;80% in 2016) in patterns that may reflect current strength and turbidity. Our results demonstrate that low-tech substrate stabilization can facilitate natural coral recruitment and growth. We conclude that relatively low-cost methods can deliver sustained rehabilitation of hard coral cover and that long-term monitoring should be incorporated more widely in restoration activities to inform return on investment.

Biodiversity conservation interventions often aim to benefit both nature and people; however, the social impacts of these interventions remain poorly understood. We reviewed recent literature on the social impacts of four marine conservation interventions to understand the synergies, tradeoffs, and equity (STE) of these impacts, focusing on the direction, magnitude, and distribution of impacts across domains of human wellbeing and across spatial, temporal, and social scales. STE literature has increased dramatically since 2000, particularly for marine protected areas (MPAs), but remains limited. Few studies use rigorous counterfactual study designs, and significant research gaps remain regarding specific wellbeing domains (culture, education), social groups (gender, age, ethnic groups), and impacts over time. Practitioners and researchers should recognize the role of shifting property rights, power asymmetries, individual capabilities, and resource dependency in shaping STE in conservation outcomes, and utilize multi-consequential frameworks to support the wellbeing of vulnerable and marginalized groups.

Ensuring the persistence of biodiversity and ecosystem services represents a global challenge that need to be addressed with high urgency. Global priority areas can only be identified by means of an integrated prioritization approach that would not only preserve species numbers and ecosystem services, but also the evolutionary and functional components of diversity. In this study we combine global datasets on the distribution of mammals and birds with species traits and phylogenetic data and we identify conservation priorities for taxonomic, functional and phylogenetic diversity, as well as for three ecosystem services, including potential for carbon sequestration, pollination potential and groundwater recharge. We show that, when priority areas are identified based only on individual, e.g. functional diversity, or any combination of the three biodiversity components, these areas do not allow a sufficient protection of the three ecosystem services. However, an integrated approach whereby prioritization is based on all biodiversity components and ecosystem services would allow to identify areas that maximize protection of all ecosystem services with a minimal loss in biodiversity coverage. Our results highlight the need for an integrated conservation planning framework in order to optimally allocate resources and achieve the long-term preservation of the multiple dimensions of biodiversity and ecosystems services.

Forests in southwestern Amazonia are increasingly being converted for agriculture, mining, and infrastructure development; subjected to low-intensity selective logging of high value timber species; and designated as conservation areas and indigenous reserves. To understand the impacts of forestry in this region, we evaluated carbon emissions from felling, skidding, and hauling in five FSC-certified concessions where workers were trained in reduced-impact logging (RIL) and in four non-certified concessions where workers were not trained in RIL in Madre de Dios, Peru. Emissions estimates did not differ by certification status, so we established a single baseline for selective logging emissions. Total carbon emissions from selective logging were low per hectare (4.9-11.6Mg ha-1) due to low logging intensities (2.9-8.1 m3 ha-1). Despite the unique architecture of trees in the southwestern Amazon (short stems and large crowns), emissions per volume and per ton carbon in the extracted timber were also relatively low (1.55 Mg m-3 and 4.04 Mg Mg-1, respectively). Only emissions per area scaled with logging intensity. Emissions were dominated by the felled tree itself (in extracted logs and residuals), whereas hauling infrastructure (roads and log landings) contributed comparatively little.

Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 percent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 percent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.

The forest landscapes of the Greater Mekong Subregion (GMS) are changing dramatically, with a multitude of impacts from local to global levels. These changes invariably have their foundations in forest governance. The aim of this paper is to assess perceptions of key stakeholders regarding the state of forest governance in the countries of the GMS. The work is based on a quantitative and qualitative analysis of the perceptions of forest governance in the five GMS countries, involving 762 representatives from government, civil society, news media, and rural communities. The work identified many challenges to good forest governance in the countries in the region, as well as noting reasons for optimism. Generally speaking, there was a feeling that the policies, legislation, and institutional frameworks were supportive, but there are numerous challenges in terms of implementation, enforcement, and compliance. The work also presents a program of activities recommended by the research participants to address governance challenges and opportunities in the GMS countries. These include the development of a forest governance monitoring system, and initiatives that support informed decision-making by forest product consumers in the region as well as the implementation of a capacity development program for non-state actors (e.g., civil society, news media) to ensure they are more able to support the diverse, and often demanding, forest governance initiatives.

Increasing human demands for ecosystem services due to climate change, population growth, poverty, lack of employment, tourism, and concomitant coastal property development threatens adaptive capacity in South Africa's coastlines. Adaptation strategies frequently propose ecosystem-based adaptation (EBA) as a model for transformative change. However, several studies point to difficulties implementing EBA across the world. The aim of this paper is to assess to what extent social-ecological systems approaches and common pool resource (CPR) governance theories could inform EBA. Data obtained from interviews and surveys with policy makers and residents in South Africa's Garden Route District were interpreted using the robustness framework (RF) and the design principles (DPs), two common tools for analyzing CPR governance. We found that the Garden Route coast is threatened by negative interactions between hard public and private infrastructures and ecological infrastructures (the cornerstone of EBA) which are driven by weak local government bodies and asymmetrical power relations. By coding the data for elements/interactions within the RF and then identifying and mapping the DPs onto the RF, we also revealed ways to leverage transformative EBA in the Garden Route. Our analyses suggest that the interactions between human-made and ecological infrastructures, as well as power relation, should be at the core of any development debate. Trade-offs should aim for maximum congruence between sustainability and equity in ecosystem services provisioning. This paper provides some considerations for researchers and decision makers to leverage transformative EBA that could potentially apply to areas experiencing similar challenges.

To account for progress towards conservation targets, monitoring systems should capture not only information on biodiversity but also knowledge on the dynamics of ecological processes and the related effects on human well-being. Protected areas represent complex social-ecological systems with strong human-nature interactions. They are able to provide relevant information about how global and local scale drivers (e.g., climate change, land use change) impact biodiversity and ecosystem services. Here we develop a framework that uses an ecosystem-focused approach to support managers in identifying essential variables in an integrated and scalable approach. We advocate that this approach can complement current essential variable developments, by allowing conservation managers to draw on system-level knowledge and theory of biodiversity and ecosystems to identify locally important variables that meet the local or sub-global needs for conservation data. This requires the development of system narratives and causal diagrams that pinpoints the social-ecological variables that represent the state and drivers of the different components, and their relationships. We describe a scalable framework that builds on system based narratives to describe all system components, the models used to represent them and the data needed. Considering the global distribution of protected areas, with an investment in standards, transparency, and on active data mobilisation strategies for essential variables, these have the potential to be the backbone of global biodiversity monitoring, benefiting countries, biodiversity observation networks and the global biodiversity community.

Coral reefs are biodiverse and productive ecosystems but are threatened by local and global stresses. The resulting loss of coral reefs is threatening coastal food and livelihoods. Climate projections suggest that coral reefs will continue to undergo major changes even if the goals of the Paris Agreement (Dec 2015) are successfully implemented. Ecological changes include modified food webs, shifts in community structure, reduced habitat complexity, decreased fecundity and recruitment, changes to fisheries productivity/opportunity, and a shift in the carbonate budget of some ecosystems toward dissolution and erosion of calcium carbonate stocks. Broad estimates of the long-term (present value) of services provided by the ocean's ecological assets exist and are useful in highlighting the value of reefs yet must be contextualised by how people respond under ecosystem change. The dynamic nature of the relationship between people, economies, and the environment complicates estimation of human consequences and economic outcomes of changing environmental and ecological capital. Challenges have increased given lack of baseline data and our inability to predict (with any precision) how people respond to changing coral reef conditions, especially given the variability, flexibility, and creativity shown by human communities and economies under change. Here, we explore how the changes to the three-dimensional structure of coral reefs affect benefits for people, specifically coastal protection, fisheries habitat, and tourism. Based on a review of available data and literature, we make a series of key recommendations that are required to better understanding of how global change will affect people dependent on coral reefs. These include: (1) baseline studies and frameworks for understanding human responses to climate change within complex social and ecological setting such as coral reefs, (2) better tools for exploring environmental benefits, markets, and financial systems faced by change, and (3) the integration of these insights into more effective policy making.

Non-state and subnational climate actors have become central to global climate change governance. Quantitatively assessing climate mitigation undertaken by these entities is critical to understand the credibility of this trend. In this Perspective, we make recommendations regarding five main areas of research and methodological development related to evaluating non-state and subnational climate actions: defining clear boundaries and terminology; use of common methodologies to aggregate and assess non-state and subnational contributions; systematically dealing with issues of overlap; estimating the likelihood of implementation; and addressing data gaps.

Three-dimensional point data acquired by Terrestrial Lidar Scanning (TLS) is used as ground observation in comparisons with fire severity indices computed from Landsat satellite multi-temporal images through Google Earth Engine (GEE). Forest fires are measured by the extent and severity of fire. Current methods of assessing fire severity are limited to on-site visual inspection or the use of satellite and aerial images to quantify severity over larger areas. On the ground, assessment of fire severity is influenced by the observers' knowledge of the local ecosystem and ability to accurately assess several forest structure measurements. The objective of this study is to introduce TLS to validate spectral burned ratios obtained from Landsat images. The spectral change was obtained by an image compositing technique through GEE. The 32 plots were collected using TLS in Wood Buffalo National Park, Canada. TLS-generated 3D points were converted to voxels and the counted voxels were compared in four height strata. There was a negative linear relationship between spectral indices and counted voxels in the height strata between 1 to 5 m to produce R2 value of 0.45 and 0.47 for unburned plots and a non-linear relationship in the height strata between 0 to 0.5m for burned plots to produce R2 value of 0.56 and 0.59. Shrub or stand development was related with the spectral indices at unburned plots, and vegetation recovery in the ground surface was related at burned plots. As TLS systems become more cost efficient and portable, techniques used in this study will be useful to produce objective assessments of structure measurements for fire refugia and ecological response after a fire. TLS is especially useful for the quick ground assessments which are needed for forest fire applications.

Boreal forests are globally extensive and store large amounts of carbon, but recent climate change has led to drier conditions and increasing fire activity. The objective of this study is to quantify trends in fire size and frequency using data spanning multiple scales in space and time. We use multi-temporal Landsat image compositing on Google Earth Engine and validate results with reference fire maps from the Canadian Park Service. We also interpret general fire trends through the concept of Self-Organized Criticality (SOC). Our study site is Wood Buffalo National Park, which is a fire hot spot in Canada due to frequent lightning ignitions. The relativize differenced normalized burn ratio (RdNBR) was the most accurate Landsat-based burn severity metric we evaluated (52.2% producer's accuracy, 87.6% user's accuracy). The Landsat-based burn severity maps provided a better fit for a linear relationship on the log-log scale of fire size and frequency than a manually drawn fire map. Landsat-based fire trends since 1990 conformed to a power-law distribution with a slope of 1.9, which is related to fractal dimensions of the satellite-based fire perimeter shapes. The unburned and low-severity patches within the burn severity mosaic influenced the power-law slope and associated fractal dimensionality. This study demonstrates a multi-scale and multi-dataset technique to quantify general fire trends and changing fire cycles in remote locations and establishes a baseline database for assessing future fire activity. Testing criticality by power laws helps to quantify emergent trends of contemporary fire regimes, which could inform the strategic application of prescribed fire and other management activities. Natural resource managers can utilize information from this study to understand local ecosystem adaptability to large fire events and ecosystem stability in the context of recent increasing fire activity.

Over the last 25 years, the global area of certified forests has grown rapidly and voluntary forest certification has become recognized as an effective tool to engage international markets in improving sustainability within forest management units. However, the bulk of this growth has occurred in North America, Northern Europe, Australia, and New Zealand, with relatively limited uptake in the tropics. Since its creation, forest certification has been largely understood as a "market-based" mechanism, in contrast to government-led policies and regulations. Through the experience of the Responsible Asia Forestry and Trade (RAFT) partnership in the Asia Pacific region, we find that the framing of forest certification as voluntary and market-based, and as a mechanism to overcome governance failure, has created an artificial dichotomy. In this dichotomy, voluntary certification and regulatory measures to promote sustainable forest management are conceived of and pursued largely independently. We argue that it is more constructive to view them as complementary approaches that share a common goal of increasing sustainability across the forestry sector. In practice, forest certification interacts with conventional governance institutions and mechanisms. Understanding these interactions and their implications, as well as additional possibilities for interaction, will help in realizing the full potential of forest certification.

The HydroATLAS database provides a standardized compendium of descriptive hydro-environmental information for all watersheds and rivers of the world at high spatial resolution. Version 1.0 of HydroATLAS offers data for 56 variables, partitioned into 281 individual attributes and organized in six categories: hydrology; physiography; climate; land cover & use; soils & geology; and anthropogenic influences. HydroATLAS derives the hydro-environmental characteristics by aggregating and reformatting original data from well-established global digital maps, and by accumulating them along the drainage network from headwaters to ocean outlets. The attributes are linked to hierarchically nested sub-basins at multiple scales, as well as to individual river reaches, both extracted from the global HydroSHEDS database at 15 arc-second (˜500 m) resolution. The sub-basin and river reach information is offered in two companion datasets: BasinATLAS and RiverATLAS. The standardized format of HydroATLAS ensures easy applicability while the inherent topological information supports basic network functionality such as identifying up- and downstream connections. HydroATLAS is fully compatible with other products of the overarching HydroSHEDS project enabling versatile hydro-ecological assessments for a broad user community.

As conservation shifts to meet the challenges of our globalized world, approaches for planning and evaluating interventions must evolve to account for the increasing complexity of conservation problems and the dynamic, multiscalar relationships between humans and the environment. Systems thinking offers approaches that could help conservation be more adaptive, transparent, and evidence-based. Using case studies and the literature, we trace the evolution of systems thinking and demonstrate how systems mapping could support the process of planning and evaluating interventions. Systems mapping helps disentangle the context of conservation and encourage collaborative planning that integrates diverse views. It can also change the way interventions are characterized and communicated by emphasizing the systems targeted for change as opposed to actions. Last, it can encourage evidence-based decision-making by identifying indicators attune to complexity, prompting discussion on knowledge gaps, and filling gaps through qualitative mapping or computational modeling. Integrating systems thinking in practice will help practitioners foster the capacity for learning and adaptation required for conservation to deliver global results.

Although a major portion of the planet’s land and sea is managed to conserve biodiversity, little is known about the extent, speed and patterns of adoption of conservation initiatives. We undertook a quantitative exploration of how area-based conservation initiatives go to scale by analysing the adoption of 22 widely recognized and diverse initiatives from across the globe. We use a standardized approach to compare the potential of different initiatives to reach scale. While our study is not exhaustive, our analyses reveal consistent patterns across a variety of initiatives: adoption of most initiatives (82% of our case studies) started slowly before rapidly going to scale. Consistent with diffusion of innovation theory, most initiatives exhibit slow-fast-slow (that is, sigmoidal) dynamics driven by interactions between existing and potential adopters. However, uptake rates and saturation points vary among the initiatives and across localities. Our models suggest that the uptake of most of our case studies is limited; over half of the initiatives will be taken up by <30% of their potential adopters. We also provide a methodology for quantitatively understanding the process of scaling. Our findings inform us how initiatives scale up to widespread adoption, which will facilitate forecasts of the future level of adoption of initiatives, and benchmark their extent and speed of adoption against those of our case studies.

Expanding human populations, combined with an increasingly variable climate, present challenges to the conservation of wide-ranging wildlife species, particularly for populations that persist in human-dominated landscapes. Although the movements and space use of many equid species have been well studied, comparable research of the Hartmann's mountain zebra (HMZ) Equus zebra hartmannae, which primarily inhabits communal and commercial farming areas of Namibia, has been scarce and may limit conservation effectiveness. Here, we investigated the environmental and anthropogenic factors influencing HMZ movements and resource use across a large area of their range in northwestern Namibia. We deployed 6 GPS collars on HMZ during 2011 to 2013 and used integrated step selection functions to quantify HMZ movements and space use. HMZ movements averaged ˜5 km d-1, and mean seasonal home range sizes were 681 and 256 km2 in the wet and dry season, respectively. HMZ selected for areas with high normalized difference vegetation index values (used as a proxy for primary production), particularly during the dry season, while avoiding areas further from water and closer to human settlements, although the effect was less apparent during the rainy season. Movement rates increased when HMZ crossed roads and were closer to roadways, but rates were not impacted by proximity to human activities. These results provide insights toward mitigating human-HMZ conflict. We highlight the difficulty a changing and less predictable climate creates for grazing species living in arid regions, as they must expend more energy and navigate dangers of a growing human footprint to seek out valuable but ephemeral forage.

Tourism may benefit conservation, but some wildlife viewing practices threaten the sustainability of both business and conservation initiatives. In north-west Namibia, conservation-oriented tourism provides tourists with an opportunity to encounter the critically-endangered black rhinoceros Diceros bicornis on foot. We used 123 tourist-rhinoceros encounters and employed a statistical modeling approach to: (1) identify the characteristics of human-rhinoceros encounters that caused rhinoceros disturbance and displacement; and (2) design rhinoceros-human encounter guidelines that improve sustainability. A model-averaging, information-theoretic approach identified tourist approach distance, viewing time and individual encounter exposure as the most significant predictors of rhinoceros disturbance level. A suite of rhinoceros viewing scenarios were modeled for acceptable disturbance risks, and adopted as a rhinoceros viewing policy. The policy reduced encounter displacements by 80% while maintaining a 95% positive feedback rating from guests. We demonstrate an evidence-based, policy-oriented management approach can help improve tourism's contribution towards the conservation of an endangered species.

Increasing human populations around the global coastline have caused extensive loss, degradation and fragmentation of coastal ecosystems, threatening the delivery of important ecosystem services1. As a result, alarming losses of mangrove, coral reef, seagrass, kelp forest and coastal marsh ecosystems have occurred1,2,3,4,5,6. However, owing to the difficulty of mapping intertidal areas globally, the distribution and status of tidal flats—one of the most extensive coastal ecosystems—remain unknown7. Here we present an analysis of over 700,000 satellite images that maps the global extent of and change in tidal flats over the course of 33 years (1984–2016). We find that tidal flats, defined as sand, rock or mud flats that undergo regular tidal inundation7, occupy at least 127,921 km2 (124,286–131,821 km2, 95% confidence interval). About 70% of the global extent of tidal flats is found in three continents (Asia (44% of total), North America (15.5% of total) and South America (11% of total)), with 49.2% being concentrated in just eight countries (Indonesia, China, Australia, the United States, Canada, India, Brazil and Myanmar). For regions with sufficient data to develop a consistent multi-decadal time series—which included East Asia, the Middle East and North America—we estimate that 16.02% (15.62–16.47%, 95% confidence interval) of tidal flats were lost between 1984 and 2016. Extensive degradation from coastal development1, reduced sediment delivery from major rivers8,9, sinking of riverine deltas8,10, increased coastal erosion and sea-level rise11 signal a continuing negative trajectory for tidal flat ecosystems around the world. Our high-spatial-resolution dataset delivers global maps of tidal flats, which substantially advances our understanding of the distribution, trajectory and status of these poorly known coastal ecosystems.

Protected areas (PAs) are fundamental for biodiversity conservation, yet their impacts on nearby residents are contested. We synthesized environmental and socioeconomic conditions of >87,000 children in >60,000 households situated either near or far from >600 PAs within 34 developing countries. We used quasi-experimental hierarchical regression to isolate the impact of living near a PA on several aspects of human well-being. Households near PAs with tourism also had higher wealth levels (by 17%) and a lower likelihood of poverty (by 16%) than similar households living far from PAs. Children under 5 years old living near multiple-use PAs with tourism also had higher height-for-age scores (by 10%) and were less likely to be stunted (by 13%) than similar children living far from PAs. For the largest and most comprehensive socioeconomic-environmental dataset yet assembled, we found no evidence of negative PA impacts and consistent statistical evidence to suggest PAs can positively affect human well-being.

Conversion of temperate grasslands in the North American Great Plains has long been identified as a threat to native species and systems. Avoiding conversion, particularly to agricultural cover, has been modeled to show benefits for preserving species diversity and connectivity and maintaining ecosystem services provided by grasslands such as avoiding nutrient and sediment runoff. To identify areas of likely conversion, we employed a probabilistic ecoregion-wide model using soil, topography, and climate variables to simulate future conversion. Our results indicated that roughly 60% of the ecoregion is at moderate or higher risk of conversion or has previously been converted. These data can be used to direct grassland conservation efforts and as a metric to assess suitability of future crop expansion. Also, with added information on government subsidies, clean energy mandates, conservation incentives, and other economic data, our model can be used to assess the benefits and disadvantages of such programs and policies.

Water-management infrastructure, such as dams, diversions, and levees, provides important benefits to society, including energy, flood management, and water supply, but this infrastructure is a primary cause of the decline of freshwater ecosystems and the services they provide. Due to these declines, recent attention has focused on improving the environmental performance of water infrastructure, such as modifying the location, design, or operation of infrastructure to maintain or restore environmental flows. Despite growing attention to the importance of environmental flows, and continued advancement in flow assessment methods, implementation of flow protection or restoration has lagged expectations. In this paper we describe how pursuing environmental flows at the scale of infrastructure systems, rather than individual sites, such as a dam, offers two pathways to increased implementation of environmental flows. First, policy and management mechanisms that apply to large areas–river basins or political jurisdictions–can catalyze large-scale implementation of flow protection or restoration. We provide two examples of system-scale policy and management mechanisms: flow protection policies and system-scale hydropower planning and management. Although system-scale policy and management offer a clear path to large-scale implementation, there will continue to be a need for flow implementation that occurs at smaller scales, such as a high priority river reach. The second pathway focuses on implementation at that scale–such as environmental flow releases from a dam or small set of dams–but embeds dam reoperation or site-scale flow implementation within reoperation of the larger systems of resource management within which the dam or ecosystem is located. These systems of resource management can encompass various sectors and here we provide examples of dam reoperation or flow implementation facilitated by solutions that included changes to the management of (1) water supply systems; (2) floodplains; and (3) irrigation systems. We illustrate both of these system-scale pathways through a set of case studies, drawn primarily from North America, each of which includes an example of current implementation.

Ocean ecosystems are in decline, yet we also have more ocean data, and more data portals, than ever before. To make effective decisions regarding ocean management, especially in the face of global environmental change, we need to make the best use possible of these data. Yet many data are not shared, are hard to find, and cannot be effectively accessed. We identify three classes of challenges to data sharing and use: uploading, aggregating, and navigating. While tremendous advances have occurred to improve ocean data operability and transparency, the effect has been largely incremental. We propose a suite of both technical and cultural solutions to overcome these challenges including the use of natural language processing, automatic data translation, ledger-based data identifiers, digital community currencies, data impact factors, and social networks as ways of breaking through these barriers. One way to harness these solutions could be a combinatorial machine that embodies both technological and social networking solutions to aggregate ocean data and to allow researchers to discover, navigate, and download data as well as to connect researchers and data users while providing an open-sourced backend for new data tools.

Stable forests — those not already significantly disturbed nor facing predictable near-future risks of anthropogenic disturbance — may play a large role in the climate solution, due to their carbon sequestration and storage capabilities. Their importance is recognized by the Paris Agreement, but stable forests have received comparatively little attention through existing forest protection mechanisms and finance. Instead, emphasis has been placed on targeting locations where deforestation and forest degradation are happening actively. Yet stopping deforestation and forest degradation does not guarantee durable success, especially outside the geographic scope of targeted efforts. As a result, today's stable forests may be at risk without additional efforts to secure their long-term conservation.

The transboundary Mekong Basin has been dubbed the "Battery of Southeast Asia" for its large hydropower potential. Development of hydropower dams in the six riparian countries proceeds without strategic analyses of dam impacts, e.g., reduced sediment delivery to the lower Mekong. This will impact some of the world's largest freshwater fisheries and endangers the resilience of the delta, which supports 17 million livelihoods, against rising sea levels. To highlight alternatives, we contribute an optimization-based framework for strategic sequencing of dam development. We quantify lost opportunities from past development and identify remaining opportunities for better tradeoffs between sediment and hydropower. We find that limited opportunities remain for less impactful hydropower in the lower basin, where most development is currently planned, while better trade-offs could be reached with dams in the upper Mekong in China. Our results offer a strategic vision for hydropower in the Mekong, introduce a globally applicable framework to optimize dam sequences in space and time, and highlight the importance of strategic planning on multiple scales to minimize hydropower impacts on rivers.

Enhancing smallholder compliance with sustainability standards and good agricultural practices features prominently on the global sustainability agenda. Operating in a sector that bears intense public scrutiny, Indonesia's oil palm smallholders are especially confronted by pressures to enhance their environmental performance. Because smallholders experience differentiated compliance barriers however, it is widely recognized that for the purpose of more effectively prioritizing and targeting the necessary intervention support, smallholder heterogeneity needs to be better understood. This is especially the case for independent – in contrast to 'plasma' - oil palm smallholders, for whom corporate technical, input and financial support is comparatively inaccessible. Through multivariate analysis, this article contributes to these needs by developing a typology of independent oil palm smallholders in Indonesian Borneo. We subsequently model the predicted probabilities of different types of smallholders complying with Indonesia's major national sustainability standard and select indicators of good agricultural practice. This analysis reveals structural compliance gaps, which threatens to restrict smallholder access to formal markets in future. In showing that intervention strategies to resolve these compliance gaps can be more impactful when these are adapted to smallholder livelihood assets, portfolios and strategies, this article points to the importance of more explicitly accounting for socio-economic differentiation when addressing contemporary smallholder upgrading challenges. With results however revealing how local entrepreneurs and elites complicit in regulatory evasion and illegal land encroachments play a significant role in the sub-sector, local political resistance to initiatives that aim to bring the sub-sector above board can be anticipated. This highlights how institutional building needs to be more explicitly incorporated into the design of smallholder-centric intervention strategies; through, for example, the adoption of more integrative landscape-level planning approaches.

Ship strikes are one of the main human-induced threats to whale survival. A variety of measures have been used or proposed to reduce collisions and subsequent mortality of whales. These include operational measures, such as mandatory speed reduction, or technical ones, such as detection tools. There is, however, a lack of a systematic approach to assessing the various measures that can mitigate the risk of ship collisions with whales. In this paper, a holistic approach is proposed to evaluate mitigation measures based on a risk assessment framework that has been adopted by the International Maritime Organization (IMO), namely the Formal Safety Assessment (FSA). Formal Safety Assessment (FSA) is "a rational and systematic process for assessing the risk related to maritime safety and the protection of the marine environment and for evaluating the costs and benefits of IMO's options for reducing these risks". The paper conceptualizes the use of a systematic risk assessment methodology, namely the FSA, to assess measures to reduce the risk of collisions between ships and whales.

Many human populations are dependent on marine ecosystems for a range of benefits but we understand little about where and to what degree people rely on these ecosystem services. We created a new conceptual model to map the degree of human dependence on marine ecosystems based on the magnitude of the benefit, susceptibility of people to a loss of that benefit, and the availability of alternatives. We focused on mapping nutritional, economic, and coastal protection dependence, but our model is repeatable, scalable, applicable to other ecosystems, and designed to incorporate additional services and data. Here we show that dependence was highest for Pacific and Indian Ocean island nations and several West African countries. More than 775 million people live in areas with relatively high dependence scores. By identifying where and how people are dependent on marine ecosystems, our framework can be used to design more effective large-scale management and policy interventions.

This study analyzes the five primary ecosystem services and their trade-offs and synergies associated with future scenarios of oil palm plantations in West Kalimantan, Indonesia. Three plausible future scenarios were assessed: 1) business as usual, 2) conservation and, 3) sustainable intensification, based on current land-use policy and spatial planning and projected oil palm expansion. The spatial analysis tool in ArcGIS and the Integrated Valuation of Ecosystem Services and Trade-offs Tool (InVEST Tool) were used to analyze historical and future land-use change, valuation and trade-offs of ecosystem services. The sustainable intensification scenario generates a positive impact on carbon storages and water yield, although habitat quality nominally declines. In terms of total economic value of ecosystem services, the conservation scenario generates the highest value of ecosystem services, while the sustainable intensification scenario offers a compromise solution for future expansion of oil palm by ensuring the supply of ecosystem services comparable to conservation scenario but without significantly affecting palm oil yield in comparison to the business-as-usual scenario. A detailed study with better information on the economic values of ecosystem services can provide a better understanding of the social and environmental impacts of oil palm expansion.

This study analyzes the five primary ecosystem services and their trade-offs and synergies associated with future scenarios of oil palm plantations in West Kalimantan, Indonesia. Three plausible future scenarios were assessed: 1) business as usual, 2) conservation and, 3) sustainable intensification, based on current land-use policy and spatial planning and projected oil palm expansion. The spatial analysis tool in ArcGIS and the Integrated Valuation of Ecosystem Services and Trade-offs Tool (InVEST Tool) were used to analyze historical and future land-use change, valuation and trade-offs of ecosystem services. The sustainable intensification scenario generates a positive impact on carbon storages and water yield, although habitat quality nominally declines. In terms of total economic value of ecosystem services, the conservation scenario generates the highest value of ecosystem services, while the sustainable intensification scenario offers a compromise solution for future expansion of oil palm by ensuring the supply of ecosystem services comparable to conservation scenario but without significantly affecting palm oil yield in comparison to the business-as-usual scenario. A detailed study with better information on the economic values of ecosystem services can provide a better understanding of the social and environmental impacts of oil palm expansion.

Voluntary sustainability standards (VSS) are stakeholder-derived principles with measurable and enforceable criteria to promote sustainable production outcomes. While institutional commitments to use VSS to meet sustainable procurement policies have grown rapidly over the past decade, we still have relatively little understanding of the (i) direct environmental benefits of large-scale VSS adoption; (ii) potential perverse indirect impacts of adoption; and (iii) implementation pathways. Here, we illustrate and address these knowledge gaps using an ecosystem service modeling and scenario analysis of Bonsucro, the leading VSS for sugarcane. We find that global compliance with the Bonsucro environmental standards would reduce current sugarcane production area (-24%), net tonnage (-11%), irrigation water use (-65%), nutrient loading (-34%), and greenhouse gas emissions from cultivation (-51%). Under a scenario of doubled global sugarcane production, Bonsucro adoption would further limit water use and greenhouse gas emissions by preventing sugarcane expansion into water-stressed and high-carbon stock ecosystems. This outcome was achieved via expansion largely on existing agricultural lands. However, displacement of other crops could drive detrimental impacts from indirect land use. We find that over half of the potential direct environmental benefits of Bonsucro standards under the doubling scenario could be achieved by targeting adoption in just 10% of global sugarcane production areas. However, designing policy that generates the most environmentally beneficial Bonsucro adoption pathway requires a better understanding of the economic and social costs of VSS adoption. Finally, we suggest research directions to advance sustainable consumption and production.

Community-based natural resource management programs can recover wildlife and deliver tangible benefits such as financial gains to local communities. Less-tangible impacts like changes in attitudes towards wildlife are not as well-understood, yet in the long-term, positive attitudes may be an important determinant of sustainability in such programs. We investigated the connection between actual and perceived benefits of a community-based conservation program in Namibia and residents' attitudes towards wildlife. We administered a questionnaire with a specific focus on attitudes to >400 community members across 18 communal conservancies that generated either (i) high benefits from tourism, (ii) high benefits from hunting, or (iii) low/no benefits. We used an empirical modelling approach that isolated the impact of conservancy-level benefits, while controlling for a variety of factors that can also influence attitudes towards wildlife. Using an information theoretic and model-averaging approach, we show that all else equal, respondents living in conservancies generating high benefits from hunting had more favourable attitudes towards wildlife than those living in conservancies generating low benefits (as expected), but also as compared to those living in conservancies generating high benefits from tourism. A variety of individual-level characteristics, such as the costs and benefits (both tangible and intangible) that respondents have personally experienced from wildlife, as well as demographic factors, were also important in conditioning attitudes. Our results demonstrate that community-based conservation programs can positively impact attitudes towards wildlife, but that this is conditioned by the type and magnitude of benefits and costs that individuals experience from wildlife, all of which should be assessed in order to most effectively support such programs.

Camera traps have existed since the 1890s (Kucera and Barrett 2011), but they weren't widely used until the introduction of commercial infrared-triggered cameras in the early 1990s (Meek et al. 2014). Since then, millions, perhaps billions of camera trap images have been collected for many reasons, biodiversity monitoring being one of the key applications. Unfortunately, although there are camera trap deployments all over the world, these operations occur in isolation, limiting the impact they could have on a global understanding of biodiversity health. Even within individual institutions, managing and analyzing multiple camera trap deployments in aggregate can be challenging. In fact, managing a single deployment of camera traps is non-trivial and important data are frequently cast aside as bycatch, left unanalyzed on decaying hard drives. Wildlife Insights attempts to overcome these hurdles by providing camera trap data upload, management, and analysis services. It provides the world's largest database of camera trap images by bringing together the camera trapping efforts of several the world’s largest conservation and research organizations, and it is open to future contributors. Artificial Intelligence-driven services sit at the heart of the platform. New camera trap data uploads are automatically analyzed to differentiate between images with people, non-human animals, and no animals. The images with non-human animals are further analyzed to detect specific species. The proposed labels are sent back to the submitter for review and then uploaded to the database. All uploaded images, unless specifically embargoed, are immediately available for analysis by all users of the system. A selection of tools are provided to support analyses of global biodiversity. This presentation will describe Wildlife Insights and its AI implementation in detail, contextualized by case studies using analyses of the data currently stored on the platform. Challenges around integrating camera trap data within the platform and with other external services that work with the platform will also be discussed. The talk will end with some thoughts about future directions for the AI services, especially with regards to integration with related platforms.

Mega-diverse coral reef ecosystems are declining globally, necessitating conservation prioritizations to protect biodiversity and ecosystem services of sites with high functional integrity to promote persistence. In practice however, the design of marine-protected area (MPA) systems often relies on broad classifications of habitat class and size, making the tacit assumption that all reefs are of comparable condition. We explored the impact of this assumption through a novel, pragmatic approach for incorporating variability in coral cover in a large-scale regional spatial prioritization plan.

Policymakers and investors have perceived securing soil organic carbon as too difficult, with uncertain returns. But new technical, policy and financial opportunities offer hope for rapid progress. Growing visibility and international frameworks for soil organic carbon are not yet matched by investment and action at scale. Soils, mostly privately owned but delivering public goods, are managed under a miscellany of governance arrangements, from local to global1. While there have been compelling calls for action on soils, diverse protagonists across business1,2, governments and civil society who seek to secure soil organic carbon recognize barriers beyond their individual reach—and hence an urgent need for a cross-sectoral global agenda.

Palm oil production has increased rapidly over the past two decades in response to rising demand for its use in food, energy, and industrial applications. Expansion of oil palm plantations presents a dilemma, as they can displace forests and peatlands, leading to biodiversity losses and increased greenhouse gas emissions. Although projections show that expansion of oil palm area will slow with faster yield growth, important concerns remain that will require careful attention from policymakers.

Food systems have the potential to nurture human health and support environmental sustainability; however, they are currently threatening both. Providing a growing global population with healthy diets from sustainable food systems is an immediate challenge. Although global food production of calories has kept pace with population growth, more than 820 million people have insufficient food and many more consume low-quality diets that cause micronutrient deficiencies and contribute to a substantial rise in the incidence of diet-related obesity and diet-related non-communicable diseases, including coronary heart disease, stroke, and diabetes. Unhealthy diets pose a greater risk to morbidity and mortality than does unsafe sex, and alcohol, drug, and tobacco use combined. Because much of the world's population is inadequately nourished and many environmental systems and processes are pushed beyond safe boundaries by food production, a global transformation of the food system is urgently needed.

2018

Climate change is one of the greatest threats facing society and is already having a significant impact on people and biodiversity around the globe. Rural communities in developing countries are experiencing some of the worst impacts of climate change, but removed from decision making bodies and financial resources, they are often left to their own devices to cope with and adapt to these changes. Through WWF's Climate Crowd initiative, large amounts of data on how vulnerable communities are affected by changes in weather and climate, how they are coping with these changes, and how their responses might negatively impact biodiversity are being crowd-sourced. WWF then curates data sourced from partner organisations, analyses it, and disseminates it on wwfclimatecrowd.org for use by researchers, educators, and conservation and development practitioners. This data is also used to develop and implement site-specific solutions that reduce the vulnerability of people and wildlife to changes in climate.

Increasing weather risks threaten agricultural production systems and food security across the world. Maintaining agricultural growth while minimizing climate shocks is crucial to building a resilient food production system and meeting developmental goals in vulnerable countries. Experts have proposed several technological, institutional, and policy interventions to help farmers adapt to current and future weather variability and to mitigate greenhouse gas (GHG) emissions. This paper presents the climate-smart village (CSV) approach as a means of performing agricultural research for development that robustly tests technological and institutional options for dealing with climatic variability and climate change in agriculture using participatory methods. It aims to scale up and scale out the appropriate options and draw out lessons for policy makers from local to global levels. The approach incorporates evaluation of climate-smart technologies, practices, services, and processes relevant to local climatic risk management and identifies opportunities for maximizing adaptation gains from synergies across different interventions and recognizing potential maladaptation and trade-offs. It ensures that these are aligned with local knowledge and link into development plans. This paper describes early results in Asia, Africa, and Latin America to illustrate different examples of the CSV approach in diverse agroecological settings. Results from initial studies indicate that the CSV approach has a high potential for scaling out promising climate-smart agricultural technologies, practices, and services. Climate analog studies indicate that the lessons learned at the CSV sites would be relevant to adaptation planning in a large part of global agricultural land even under scenarios of climate change. Key barriers and opportunities for further work are also discussed.

Factors shaping coral-reef fish species assemblages can operate over a wide range of spatial scales (local versus regional) and across both proximate and evolutionary time. Niche theory and neutral theory provide frameworks for testing assumptions and generating insights about the importance of local versus regional processes. Niche theory postulates that species assemblages are an outcome of evolutionary processes at regional scales followed by local-scale interactions, whereas neutral theory presumes that species assemblages are formed by largely random processes drawing from regional species pools. Indo-Pacific cryptobenthic coral-reef fishes are highly evolved, ecologically diverse, temporally responsive, and situated on a natural longitudinal diversity gradient, making them an ideal group for testing predictions from niche and neutral theories and effects of regional and local processes on species assemblages. Using a combination of ecological metrics (fish density, diversity, assemblage composition) and evolutionary analyses (testing for phylogenetic niche conservatism), we demonstrate that the structure of cryptobenthic fish assemblages can be explained by a mixture of regional factors, such as the size of regional species pools and broad-scale barriers to gene flow/drivers of speciation, coupled with local-scale factors, such as the relative abundance of specific microhabitat types. Furthermore, species of cryptobenthic fishes have distinct microhabitat associations that drive significant differences in assemblage community structure between microhabitat types, and these distinct microhabitat associations are phylogenetically conserved over evolutionary timescales. The implied differential fitness of cryptobenthic fishes across varied microhabitats and the conserved nature of their ecology are consistent with predictions from niche theory. Neutral theory predictions may still hold true for early life-history stages, where stochastic factors may be more important in explaining recruitment. Overall, through integration of ecological and evolutionary techniques, and using multiple spatial scales, our study offers a unique perspective on factors determining coral-reef fish assemblages.

Coral reefs are again in the spotlight, having suffered mass mortality over the past two years from global bleaching events. Before reef resilience runs out, researchers must move beyond lamenting corals' lost pristine state and develop pragmatic solutions. In our view, these are likely to stem from a more diverse set of stakeholders than have participated so far. We must ensure that reefs can continue to provide well-being for millions of people in the future, despite widespread alterations in their biological state.

The Nationally Determined Contributions (NDCs) submitted under the Paris Agreement propose a country's contribution to global mitigation efforts and domestic adaptation initiatives. This paper provides a systematic analysis of NDCs submitted by South Asian nations, in order to assess how far their commitments might deliver meaningful contributions to the global 2°C target and to sustainable broad-based adaptation benefits. Though agriculture-related emissions are prominent in emission profiles of South Asian countries, their emission reduction commitments are less likely to include agriculture, partly because of a concern over food security.

Trophy hunting in Africa is currently under pressure as some countries explore various policies that aim to put a halt to an activity that many people in the Western developed world view as unpalatable or unethical. However, in the debate over trophy hunting policy the voices of local communities, who in many instances allow wildlife to persist on the lands they control because of the tangible benefits they derive from it, have been largely unheard. Here, we report on an opportunistic survey of 160 rural residents of Namibia from 32 communal conservancies that generate varying levels of livelihood benefits from wildlife uses, including trophy hunting. About three quarters of these community members were employed in some manner by the conservancy. We used a mixed methods approach to assess community members' perceptions on trophy hunting, the benefits it generates, whether it was "good" or "bad", and how they would respond if trophy hunting were halted. 91% stated they were not in favour of a ban on trophy hunting, and only 11% of respondents would support wildlife on communal lands if a ban were in fact enacted. Most respondents (90%) were happy with trophy hunting occurring on communal lands due to the benefits it provides. These responses were consistent across respondent demographic categories, although those who stand to lose the most (i.e., those employed by or managing a conservancy), viewed trophy hunting in an even more favourable light. Our results suggest that in Namibia, a trophy hunting ban would be viewed very poorly by conservancy residents, and would seriously weaken their support for wildlife conservation. The imposition of trophy hunting policies by countries far from where rural land managers are conserving wildlife would not only restrict communities' livelihood options, but may have perverse, negative impacts on wildlife conservation.

Aichi Target 11 has galvanized expansion of the global protected area network, but there is little evidence that this brings real biodiversity gains. We argue that area-based prioritization risks unintended perverse consequences and that the focus of protected area target development should shift from quantity to quality.

Landscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity. To compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection. Using movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements. All connectivity models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP models. CTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.

Protected areas are the primary management tool for conserving ecosystems, yet their intended outcomes may often be compromised by poaching. Consequently, many protected areas are ineffective 'paper parks' that contribute little towards conserving ecosystems. Poaching can be prevented through enforcement and engaging with community members so they support protected areas. It is not clear how much needs to be spent on enforcement and engagement to ensure they are frequent enough to be effective at conserving biodiversity. We develop models of enforcement against illegal fishing in marine protected areas. We apply the models to data on fishing rates and fish biomass from a marine protected area in Raja Ampat, Indonesia and explore how frequent enforcement patrols need to be to achieve targets for coral reef fish biomass.

The United States has been at the forefront of marine resource stewardship since the 1970s when Federal officials began to implement a series of national policies aimed at the conservation and management of public trust resources in the ocean. Beginning with the establishment of the National Oceanic and Atmospheric Administration in 1970, soon followed by several pieces of landmark legislation, this era marked the start of a continuing effort to integrate ecosystem science with marine resource management. Among the most important bipartisan legacies of this effort has been the steady expansion of marine managed areas in U.S. coastal and ocean waters. This legacy is being challenged as the Trump Administration considers whether to alter or eliminate the nation's Marine National Monuments and National Marine Sanctuaries.

Despite the plethora of discourse about how sustainable development should be pursued, the production of agricultural commodities is held responsible for driving c. 80% of global deforestation. Partially as a response, the private sector has made commitments to eliminate deforestation, but it is not yet clear what factors these commitments should take into account to effectively halt deforestation while also contributing to broader sustainable development. In the context of private sector commitments to zero-deforestation, this study characterizes the perceptions of different types of stakeholders along the cocoa and chocolate supply chain in order to determine the main challenges and solutions to encourage sustainable production. The main purpose is to understand the key factors that could facilitate a transition to a more sustainable supply while harmonizing the multiple actors' interests.

The construction of the Three Gorges Dam, along with other development in the Yangtze River basin, has had profound consequences for the river's flow and sediment regime. This has had major impacts on the geomorphology and ecology of the river downstream of the dam, with related impacts on biodiversity, including fish populations, livelihoods, and water security in the middle and lower Yangtze. Changes to fish populations have included a fall of around 90% in the total number of fish fry for the four economically-important Chinese carp species, caused at least in part by alterations in the flow regime. In response, there has been increased research into the significance of flow regimes for Chinese carp, as well as other aspects of river health. A partnership between the Chinese Government, the dam operator, scientists, and conservationists has led to pilot environmental flow releases over a 5-year period in an attempt to mitigate some of these impacts. Subsequent monitoring has shown that numbers of fish fry are increasing from the low they had fallen to in 2008. Drawing on lessons from the pilot environmental flow releases, in October 2015 the official regulations that govern operations of the Three Gorges Dam were amended to incorporate additional objectives, including incorporating environmental flow releases as part of the routine operation of the dam. This paper describes the processes that led to the environmental flow program from Three Gorges, a review of monitoring data collected during the pilot environmental flow releases, the subsequent amendment of the dam operating rules, and prospects for expanding environmental flow implementation in the Yangtze River in coming years.

Allocating resources to growth and reproduction requires grazers to invest time in foraging, but foraging promotes dental senescence and constrains expression of proactive antipredator behaviors such as vigilance. We explored the relationship between carnivore prey selection and prey foraging effort using incisors collected from the kills of coursing and stalking carnivores. We predicted that prey investing less effort in foraging would be killed more frequently by coursers, predators that often exploit physical deficiencies. However, such prey could expect delayed dental senescence. We predicted that individuals investing more effort in foraging would be killed more frequently by stalkers, predators that often exploit behavioral vulnerabilities. Further these prey could expect earlier dental senescence. We tested these predictions by comparing variation in age-corrected tooth wear, a proxy of cumulative foraging effort, in adult (3.4-11.9 years) wildebeest killed by coursing and stalking carnivores. Predator type was a strong predictor of age-corrected tooth wear within each gender. We found greater foraging effort and earlier expected dental senescence, equivalent to 2.6 additional years of foraging, in female wildebeest killed by stalkers than in females killed by coursers. However, male wildebeest showed the opposite pattern with the equivalent of 2.4 years of additional tooth wear in males killed by coursers as compared to those killed by stalkers. Sex-specific variation in the effects of foraging effort on vulnerability was unexpected and suggests that behavioral and physical aspects of vulnerability may not be subject to the same selective pressures across genders in multipredator landscapes.

A key question for sustainability science is how to generate higher well-being by, or despite, reducing personal consumption – an outcome known as the "double dividend" (Alfredsson et al., 2018; Jackson, 2005). The idea of the double dividend originated from studies suggesting that, beyond a certain level, increases in GDP or income have little impact on well-being, happiness, or life satisfaction (Costanza et al., 2009; Easterlin et al., 2009; Kahneman and Deaton, 2010; Layard, 2006). Coupled with evidence of environmental degradation associated with economic growth and consumption (Steffen et al., 2007), these studies led scholars to explore how to increase well-being in a more environmentally responsible way.

Coral reef ecosystems and the people who depend on them are increasingly exposed to the adverse effects of global environmental change (GEC), including increases in sea-surface temperature and ocean acidification. Managers and decision-makers need a better understanding of the options available for action in the face of these changes. We refine a typology of actions developed by Gattuso et al. (2015) that could serve in prioritizing strategies to deal with the impacts of GEC on reefs and people. Using the typology we refined, we investigate the scientific effort devoted to four types of management strategies: mitigate, protect, repair, adapt that we tie to the components of the chain of impact they affect: ecological vulnerability or social vulnerability. A systematic literature review is used to investigate quantitatively how scientific effort over the past 25 years is responding to the challenge posed by GEC on coral reefs and to identify gaps in research. A growing literature has focused on these impacts and on management strategies to sustain coral reef social-ecological systems. We identify 767 peer reviewed articles published between 1990 and 2016 that address coral reef management in the context of GEC. The rate of publication of such studies has increased over the years, following the general trend in climate research. The literature focuses on protect strategies the most, followed by mitigate and adapt strategies, and finally repair strategies. Developed countries, particularly Australia and the United States, are over-represented as authors and locations of case studies across all types of management strategies. Authors affiliated in developed countries play a major role in investigating case studies across the globe. The majority of articles focus on only one of the four categories of actions. A gap analysis reveals three directions for future research: (1) more research is needed in South-East Asia and other developing countries where the impacts of GEC on coral reefs will be the greatest, (2) more scholarly effort should be devoted to understanding how adapt and repair strategies can deal with the impacts of GEC, and (3) the simultaneous assessment of multiple strategies is needed to understand trade-offs and synergies between actions.

Projected climate and environmental change are expected to increase the pressure on global freshwater resources. To prepare for and cope with the related risks, stakeholders need to devise plans for sustainable management of river systems, which in turn require the identification of management-appropriate operational units, such as groups of rivers that share similar environmental and biological characteristics. Ideally, these units are of manageable size and biotically or abiotically distinguishable across a variety of river types. Here, we aim to address this need by presenting a new global river classification framework (GloRiC) to establish a common vocabulary and standardized approach to the development of globally comprehensive and integrated river classifications that can be tailored to different goals and requirements.

Global pressures on freshwater ecosystems are high and rising. Viewed primarily as a resource for humans, current practices of water use have led to catastrophic declines in freshwater species and the degradation of freshwater ecosystems, including their genetic and functional diversity. Approximately three-quarters of the world's inland wetlands have been lost, one-third of the 28,000 freshwater species assessed for the International Union for Conservation of Nature (IUCN) Red List are threatened with extinction, and freshwater vertebrate populations are undergoing declines that are more rapid than those of terrestrial and marine species. This global loss continues unchecked, despite the importance of freshwater ecosystems as a source of clean water, food, livelihoods, recreation, and inspiration.

This paper analyses the contributions of community and smallholder forestry (CSF) to achieving the sustainable development goals (SDGs). A CSF-SDG positive feedback model is proposed; a model that holds that successful CSF positively contributes to 13 SDGs and 31 SDG targets. Recent CSF meta-studies have scrutinized factors leading to CSF success and found some 10 factors and conditions that contribute to that objective. If efforts towards reaching the SDGs support or enhance these factors leading to the greater success of CSF, this in turn would boost CSF contributions to the SDGs and their targets. As a result, CSF or active support for CSF, focusing on the 10 CSF factors that favor success, can be linked to 48 unique SDG targets. The analysis suggests that there is a significant opportunity to explore win-win options for efforts to support CSF and contribute to SDGs, but also for efforts to pursue the SDGs and targets that favor CSF, which will in turn boost the contribution of CSF to the SDGs. The case of CSF and its feedback links with the SDGs suggests that it may be relevant to identify interactions between the SDGs and other socio-ecological realities and related research.

Ecosystem service (ES) maps are instrumental for the assessment and communication of the costs and benefits of human-nature interactions. Yet, despite the increased understanding that we live a globalized tele-coupled world where such interactions extend globally, ES maps are usually place-based and fail to depict the global flows of locally produced ES. We aim to shift the way ES maps are developed by bringing global value chains into ES assessments. We propose and apply a conceptual framework that integrates ES provision principles, with value chain analysis and human well-being assessment methods, while considering the spatial dimension of these components in ES mapping. We apply this framework to the case of seafood provision from purse seine tuna fishery in the Western and Central Pacific Ocean. The ES maps produced demonstrate the flow of a marine ES to a series of global beneficiaries via different trade and mobility pathways. We identify three types of flows – one to one, closed loop and open loop. We emphasize the need to consider a series of intermediate beneficiaries in ES mapping despite the lack of data. We highlight the need for a shift in ES mapping, to better include global commodity flows, across spatial scales.

• We found that 27 academic fields within the umbrella field of human-animal studies study human-animal relationships.
• There is a strong differentiation between the fields that study "animals as constructed" vs. those that study "animals as such".
• All these fields have much to contribute to conservation, but interdisciplinary research collaborations remain scarce.

The links between plantation expansion and deforestation in Borneo are debated. We used satellite imagery to map annual loss of old-growth forests, expansion of industrial plantations (oil palm and pulpwood), and their overlap in Borneo from 2001 to 2017. In 17 years, forest area declined by 14% (6.04 Mha), including 3.06 Mha of forest ultimately converted into industrial plantations. Plantations expanded by 170% (6.20 Mha: 88% oil palm; 12% pulpwood). Most forests converted to plantations were cleared and planted in the same year (92% 2.83 Mha). Annual forest loss generally increased before peaking in 2016 (0.61 Mha) and declining sharply in 2017 (0.25 Mha). After peaks in 2009 and 2012, plantation expansion and associated forest conversion have been declining in Indonesia and Malaysia. Annual plantation expansion is positively correlated with annual forest loss in both countries. The correlation vanishes when we consider plantation expansion versus forests that are cleared but not converted to plantations. The price of crude palm oil is positively correlated with plantation expansion in the following year in Indonesian (not Malaysian) Borneo. Low palm oil prices, wet conditions, and improved fire prevention all likely contributed to reduced 2017 deforestation. Oversight of company conduct requires transparent concession ownership.

Species prioritization efforts are a common strategy implemented to efficiently and effectively apply conservation efforts and allocate resources to address global declines in biodiversity. These structured processes help identify species that best represent the entire species community; however, these methods are often subjective and focus on a limited number of species characteristics. We developed an objective, transparent approach using a Structured Decision Making (SDM) framework to identify a group of grassland bird species on which to focus conservation efforts that considers biological, social, and logistical criteria in the Northern Great Plains of North America. The process quantified these criteria to ensure representation of a variety of species and habitats and included the relative value of each criterion to the working group. These SDM methods provide a unique roadmap for prioritization of grassland bird species and offer an objective, transparent, and repeatable method of selection for priority species in other well-studied ecosystems.

Mangroves, seagrass meadows, and salt marshes, collectively termed "Blue Forests," are counted among the most valuable and productive coastal ecosystems on the planet. A recent literature review of the Blue Forest valuation research identified mangroves as the most frequently analyzed of these ecosystems, yet the literature demonstrates several deficits in terms of geographic location of studies, methods used to value the services, and most notably, a lack of valuation for cultural services. To better understand this, we analyzed the studies dealing specifically with mangroves from the original literature review to quantify what has been valued, where, by which methods, and the variation in the published values. We then use this information to synthesize our current level of knowledge on the type and value of services provided by mangroves, discuss data gaps, and address specifically the collection of data relevant to cultural ecosystem services (CES).

Coastal ecosystems provide a number of life-sustaining services, from which benefits to humans can be derived. They are often inhabited by aquatic vegetation, such as mangroves, sea grasses and salt marshes. Given their wide geographic distribution and coverage, there is need to prioritize conservation efforts. An understanding of the human importance of these ecosystems can help with that prioritization. Here, we summarize a literature review of ecosystem service valuation studies. We discuss (1) the degree to which current valuation information is sufficient to prioritize blue carbon habitat conservation and restoration, (2) the relevancy of available studies, and (3) what is missing from the literature that would be needed to effectively prioritize conservation. Given the recent focus on blue carbon ecosystems in the international conservation, there are a number of areas where research on blue forest ecosystem assessment and valuation could be improved, from enhancing available methodologies to increasing valuation of rarely studied ecosystem services and wider geographic coverage of valuation studies. This review highlights these gaps and calls for a focus on broadening the ecosystem services that are valued, the methods used, and increasing valuation in underrepresented regions.

Non-state and subnational climate actors have become central to global climate change governance. Quantitatively assessing climate mitigation undertaken by these entities is critical to understand the credibility of this trend. In this Perspective, we make recommendations regarding five main areas of research and methodological development related to evaluating non-state and subnational climate actions: defining clear boundaries and terminology; use of common methodologies to aggregate and assess non-state and subnational contributions; systematically dealing with issues of overlap; estimating the likelihood of implementation; and addressing data gaps.

Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climatemediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climateinformed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

Marine reserves are a commonly applied conservation tool, but their size is often chosen based on considerations of socioeconomic rather than ecological impact. Here, we use a simple individual-based model together with the latest empirical information on home ranges, densities and schooling behavior in 66 coral reef fishes to quantify the conservation effectiveness of various reserve sizes. We find that standard reserves with a diameter of 1-2 km can achieve partial protection (greater than or equal to 50% of the maximum number of individuals) of 56% of all simulated species. Partial protection of the most important fishery species, and of species with diverse functional roles, required 2-10 km wide reserves. Full protection of nearly all simulated species required 100 km wide reserves. Linear regressions based on the mean home range and density, and even just the maximum length, of fish species approximated these results reliably, and can therefore be used to support locally effective decision making.

Analysis of long-term trends in forest carbon stocks is challenged by interactions among climate change, wildfire and other disturbances, forest management actions, and heterogeneous vegetation responses. For such circumstances where complex interactions make it difficult to encompass the full range of processes in any one mode of analysis, expert elicitation is a well-developed method for documenting judgments about uncertainty, based on available evidence, to inform ongoing decision-making. Applying this method for the Sierra Nevada, we evaluate subjective probabilistic estimates of trends in aboveground forest carbon for different management scenarios toward the goal of maximizing carbon stored, while also considering implications for wildfire risk. The analysis examines the effects of four treatments in isolation (thinning, timber harvesting, prescribed burning, managed wildfire), as well as a user-defined management portfolio allocating resources across five management practices (thinning, harvesting, prescribed burning, firefighting, and restoration). The expert elicitation suggests that aboveground forest carbon stocks will decline 8%, from 126 to 116 tC/ha, between 2030 and 2100 (median estimate across experts) assuming conventional forest management practices are continued. Out of all surveyed practices, the custom user-defined management portfolio results in the highest carbon stock of 129 tC/ha which is 11% higher than conventional practice in 2100 at the 50th percentile. The expert elicitation indicates less beneficial carbon sequestration outcomes than recent modeling studies. Suggesting co-benefits across objectives, 75 experts collectively estimate a 61% likelihood that managing for carbon also reduces wildfire risk. By contrast, decreases in carbon stocks are anticipated for large magnitudes of climate change or substantial decreases in forest management investments.

Brood parasites lay thick-shelled eggs and numerous hypotheses have been proposed to explain the significance of this trait. We examined whether thick eggshells protect the parasite egg during laying events. We used eggs of the parasitic shiny cowbird (Molothrus bonariensis) and its hosts, the house wren (Troglodytes aedon) and chalk-browed mockingbird (Mimus saturninus) in South America, and the eggs of the parasitic brown-headed cowbird (M. ater) and its hosts, the house wren and red-winged blackbird (Agelaius phoeniceus) in North America. We experimentally dropped parasite eggs onto host eggs to simulate laying by the parasite, parasite eggs onto parasite eggs to simulate multiple parasitism, host eggs onto parasite eggs to simulate hosts laying from the height cowbirds lay, and stirred eggs to simulate jostling that may occur when cowbirds and hosts interact during laying events. We found that cowbird eggs were significantly less likely to be damaged than host eggs when they were laid onto a host egg and when host and cowbird eggs were laid onto them. There was minimal damage to eggs during jostling experiments, thereby failing to support the hypothesis that thick eggshells provide protection when eggs are jostled. These findings support the hypotheses that thick eggshells resist damage when laid from an elevated position, when additional cowbird eggs are laid onto them in multiply parasitized nests, and these eggs also damage host eggs when laid.

The value of diverse perspectives in social-ecological systems research and transdisciplinarity is well recognized. Human well-being and how it is derived from dynamic ecosystems is one area where local knowledge and perspectives are critical for designing interventions for sustainable pathways out of poverty. However, to realize the potential to enrich the understanding of complex dynamics for sustainability, there is a need for methods that engage holistic ways of perceiving human-nature interactions from multiple worldviews that also acknowledge inequalities between scientific and other forms of knowledge. To date, photovoice has been used to elicit local knowledge and perspectives about ecosystem changes and ecosystem services. We expand this to explore the utility of the method for facilitating the mobilization of plural insights on human well-being, which is subject to complex social-ecological dynamics, and its role in processes for coproduction of knowledge that acknowledges the need for equity and usefulness for all actors. Drawing on two cases, one in community-based marine protected areas in Kenya and one dealing with agricultural decline and rural-urban migration in South Africa, we demonstrate two modes of application of photovoice: as a scoping exercise and as a deep learning tool. The studies descriptively illustrate how photovoice can depict the hidden and often neglected intangible connections to ecosystems, plural and disaggregated perceptions of complex social-ecological dynamics, and issues of access and distribution of ecosystem benefits. The studies also show how photovoice can encourage equitable participation of nonacademic actors in research processes and in particular contribute to mobilization of knowledge and translation of knowledge across knowledge systems. We discuss how local perspectives may be further recognized and incorporated in transdisciplinary research and reflect on the practical and ethical challenges posed by using photographs in participatory research on social-ecological systems.

Social conflicts related to biodiversity conservation and adaptation policy to climate change in coastal areas illustrate the need to reinforce understanding of the “matters of concern” as well as the “matters of fact”. In this paper, we argue that we must rethink adaptation from a new perspective, considering that humans together function as both ecological actors and social actors. Using international examples from the UNESCO world biosphere reserve network, we show that an ontological perspective may provide a simple and compact way to think about coupled infrastructure systems and systematic formalism, allowing for understanding of the relational matrix between actors, institutions and ecosystems. We contend that our formalism responds to three challenges. First, it encompasses the different regional contexts and policies that rely on the same ontology. Second, it provides a method to relate any local adaptation plan to the conservation paradigms that originate from the ecological modernization of policies. Third, it facilitates the discovery of drivers and processes involved in adaptation and management regime shifts by highlighting the way contextual factors configure, determine the structure of the action situation of the Institutional Analysis and Development framework (IAD) (Ostrom 2005), and how it operates.

Assessments of programs offering payments for forest conservation have largely focused on their contribution to avoiding deforestation but have overlooked degradation. We integrated remotely-sensed forest cover images, georeferenced landscape information, field-level forest inventories and face-to-face landowner surveys to quantify avoided deforestation and degradation within the context of Ecuador's Socio Bosque Program (PSB). We found the PSB prevented 9% of enrolled forest area in Ecuador's Amazon Basin from being deforested over the 2008-2014 period. This value is higher than previous assessments conducted in other Latin American nations. Inventory data suggest that forests within PSB-enrolled areas exhibited less evidence of degradation although statistical differences were only marginally significant On average, PSB-enrolled forests had between one and two more tree species per hectare than non-enrolled forests. These additional tree species were twice as likely to be of commercial timber value and at greater threat of extinction.

Tourism may benefit conservation, but some wildlife viewing practices threaten the sustainability of both business and conservation initiatives. In north-west Namibia, conservation-oriented tourism provides tourists with an opportunity to encounter the critically-endangered black rhinoceros Diceros bicornis on foot. We used 123 tourist-rhinoceros encounters and employed a statistical modeling approach to: (1) identify the characteristics of human-rhinoceros encounters that caused rhinoceros disturbance and displacement; and (2) design rhinoceros-human encounter guidelines that improve sustainability. A model-averaging, information-theoretic approach identified tourist approach distance, viewing time and individual encounter exposure as the most significant predictors of rhinoceros disturbance level. A suite of rhinoceros viewing scenarios were modeled for acceptable disturbance risks, and adopted as a rhinoceros viewing policy. The policy reduced encounter displacements by 80% while maintaining a 95% positive feedback rating from guests. We demonstrate an evidence-based, policy-oriented management approach can help improve tourism's contribution towards the conservation of an endangered species.

Increasing human populations around the global coastline have caused extensive loss, degradation and fragmentation of coastal ecosystems, threatening the delivery of important ecosystem services1. As a result, alarming losses of mangrove, coral reef, seagrass, kelp forest and coastal marsh ecosystems have occurred1,2,3,4,5,6. However, owing to the difficulty of mapping intertidal areas globally, the distribution and status of tidal flats–one of the most extensive coastal ecosystems–remain unknown7. Here we present an analysis of over 700,000 satellite images that maps the global extent of and change in tidal flats over the course of 33 years (1984-2016). We find that tidal flats, defined as sand, rock or mud flats that undergo regular tidal inundation7, occupy at least 127,921 km2(124,286-131,821 km2, 95% confidence interval). About 70% of the global extent of tidal flats is found in three continents (Asia (44% of total), North America (15.5% of total) and South America (11% of total)), with 49.2% being concentrated in just eight countries (Indonesia, China, Australia, the United States, Canada, India, Brazil and Myanmar). For regions with sufficient data to develop a consistent multi-decadal time series–which included East Asia, the Middle East and North America–we estimate that 16.02% (15.62-16.47%, 95% confidence interval) of tidal flats were lost between 1984 and 2016. Extensive degradation from coastal development1, reduced sediment delivery from major rivers8,9, sinking of riverine deltas8,10, increased coastal erosion and sea-level rise11 signal a continuing negative trajectory for tidal flat ecosystems around the world. Our high-spatial-resolution dataset delivers global maps of tidal flats, which substantially advances our understanding of the distribution, trajectory and status of these poorly known coastal ecosystems.

While corridors in conservation have a long history of use, evaluations of proposed or existing corridors in conservation landscapes are important to avoid the same fate as poorly-functioning "paper parks". We used resistance surface modeling and circuit theory to evaluate a number of corridors developed at regional and at local scales that aim to improve connectivity for large wildlife in the central part of the Kavango-Zambezi transfrontier conservation area. We used hourly GPS data from 16 collared African elephants (Loxodonta africana), and associated environmental data at used versus available movement paths, to develop a hierarchical Bayesian path selection function model. We used the resulting resistance surface across the study area as an input into circuit theory modeling to assess how well connectivity levels were captured by both types of corridors relative to several alternative scenarios. We found that the majority of regional-scale corridors performed relatively well at capturing elevated levels of connectivity relative to non-corridor comparisons, with 7 of 9 corridors rated as good or better in terms of how they captured electrical current levels (a proxy for connectivity). In contrast, only 14 of 33 smaller-scale, local corridors captured significantly higher levels of connectivity than adjacent non-corridor areas. Our results have practical implications for the design and implementation of wildlife connectivity conservation efforts in the world's largest transfrontier conservation landscape. Modern connectivity science approaches can help evaluate which proposed corridors are likely to function as intended, and which may need further refinement.

Increasing interest in measuring, modelling and valuing ecosystem services (ES), the benefits that ecosystems provide to people, has resulted in the development of an array of ES assessment tools in recent years. Selecting an appropriate tool for measuring and modelling ES can be challenging. This document provides guidance for practitioners on existing tools that can be applied to measure or model ES provided by important sites for biodiversity and nature conservation, including Key Biodiversity Areas (KBAs), natural World Heritage sites (WHS), and protected areas (PAs). Selecting an appropriate tool requires identifying the specific question being addressed, what sorts of results or outputs are required, and consideration of practical factors such as the level of expertise, time and data required for applying any given tool. This guide builds on existing reviews of ES assessment tools, but has an explicit focus on assessing ES for sites of importance for biodiversity and nature conservation.

A large body of research has explored opportunities to mitigate climate change in agricultural systems; however, less research has explored opportunities across the food system. Here we expand the existing research with a review of potential mitigation opportunities across the entire food system, including in pre-production, production, processing, transport, consumption and loss and waste. We detail and synthesize recent research on the topic, and explore the applicability of different climate mitigation strategies in varying country contexts with different economic and agricultural systems. Further, we highlight some potential adaptation co-benefits of food system mitigation strategies and explore the potential implications of such strategies on food systems as a whole. We suggest that a food systems research approach is greatly needed to capture such potential synergies, and highlight key areas of additional research including a greater focus on low- and middle-income countries in particular. We conclude by discussing the policy and finance opportunities needed to advance mitigation strategies in food systems.

In the decade since the Brisbane Declaration (2007) called upon governments and other decision makers to integrate environmental flows into water management, practitioners have continued to seek ways to expand implementation of flow restoration or protection. The science and practice of environmental flow assessment have evolved accordingly, generating diverse methods of differing complexity from which water managers or regulators need to select an approach best fitting their context. Uncertainty over method choice remains one of several of the more readily overcome barriers that have contributed to slowing the implementation of environmental flows. In this paper, we introduce a three-level framework intended to help overcome such barriers by intertwining holistic environmental flow assessment with implementation. The three levels differ based on the availability of resources and level of resolution required in the flow recommendations, with the framework designed to guide the user toward implementation at any level as soon as possible, based on at least some of the recommendations. Level 1 is a desktop analysis based on existing data, typically conducted by one or a few scientists. Level 2 is similarly mostly reliant on existing information, but brings together a multidisciplinary set of experts within a facilitated workshop setting to use both this knowledge and professional judgment to develop flow recommendations and fill data gaps. The most comprehensive assessment level, Level 3, guides the collection of new data and/or construction of models to test hypotheses developed by the expert team. Key characteristics of this framework include: (1) methods are matched to the levels of resources available and certainty required; funds for research are invested strategically to address critical knowledge gaps and thereby reduce uncertainty; (2) the framework is iterative and information generated at one level provides the foundation for, and identifies the need for, higher levels and; and (3) processes for flow assessment and implementation are intertwined, meaning they move forward in coordinated fashion, with each process informing the other. Using practical cases from North America, we illustrate how environmental flow assessment at each level has led to implementation, with changes in policy or management.

Climate change has significant consequences for land conservation. Government agencies and nonprofit land trusts heavily rely on perpetual conservation easements. However, climate change and other dynamic landscape changes raise questions about the effectiveness and adaptability of permanent conservation instruments like conservation easements. Building upon a study of 269 conservation easements and interviews with seventy conservation-easement professionals in six different states, we ex-amine the adaptability of conservation easements to climate change. We outline four potential approaches to enhance conservation outcomes under climate change: shift land-acquisition priorities to account for potential climate change impacts; consider conservation tools other than perpetual conservation easements; ensure that the terms of conservation easements permit the holder to adapt to climate change successfully; and provide for more active stewardship of conservation lands. There is still a good deal of uncertainty as to the legal fate of a conservation easement that no longer meets its original purposes. Many state laws provide that conservation easements can be modified or terminated in the same manner as traditional easements. Yet conservation easements are in many ways unlike other easements. The beneficiary is usually the public, not merely a neighboring landowner, and the holder is always a nonprofit conservation organization or a government agency. Thus, there is a case to be made for adaptive protection. An overly narrow focus on perpetual property rights could actually thwart efforts to meet adaptation needs over the long term. We call for careful attention to ensuring conservation outcomes in dynamic landscapes over time.

The global palm oil value chain has grown in complexity; stakeholder relationships and linkages are increasingly shaped by new public and private standards that aim to ameliorate social and environmental costs while harnessing economic gains. Regulatory initiatives in the emerging policy regime complex struggle to resolve sector-wide structural performance issues: pervasive land conflicts, yield differences between companies and smallholders, and carbon emissions arising from deforestation and peatland conversion. Identifying opportunities for more effective governance of the palm oil value chain and supply landscapes, this paper explores disconnects, complementarities, and antagonisms between public regulations and private standards, looking at the global, national, and subnational policy domains shaping chain actors' conduct. Greater complementarities have emerged among transnational instruments, but state regulation disconnects persist and antagonisms prevail between national state regulations and transnational private standards. Emerging experimental approaches, particularly at subnational level, aim to improve coordination to both enhance complementarities and resolve disconnects.

Deforestation and forest fragmentation are leading drivers of biodiversity loss. Protected areas have been the leading conservation policy response, yet their scale and scope remain inadequate to meet biodiversity conservation targets. Managed forest concessions increasingly have been recognized as a complement to protected areas in meeting conservation targets. Similarly, programs for voluntary third-party certification of concession management aim to create incentives for logging companies to manage forests more sustainably. Rigorous evidence on the impacts from large-scale certification programs is thereby critical, yet detailed field observations are limited, temporally and spatially. Remotely-sensed data, in contrast, can provide repeated observations over time and at a fine spatial scale, albeit with less detail.

In July 2017 the Conservation Leadership Programme (CLP) and WWF's Russell E. Train Education for Nature Program (EFN) hosted a knowledge cafe at the Society for Conservation Biology's 28th International Congress for Conservation Biology in Cartagena, Colombia. The event brought together 20 participants from 10 countries (Brazil, China, Colombia, Madagascar, Malawi, Mexico, Tanzania, UK, USA and Viet Nam) for an open and participatory discussion, based on structured questions, to help understand the types and levels of support required for early and mid-career conservationists. Responses were focused on the context of conservationists from countries with developing and emerging economies.

Riparian and floodplain corridors are particularly biodiverse and often form key habitat for animals in the terrestrial landscape and in most parts of the world they support more species of plants and animals than any other landscape unit.

The maintenance and restoration of riparian and floodplain corridors is a conservation priority for both freshwater and terrestrial ecosystems with considerable benefits to be gained from restoring riparian and floodplain forests. These forests play key roles in providing organic matter that drives elements of the aquatic food chain, forming physical habitat, filtering out pollutants and providing shade for maintaining appropriate light environments and water temperatures. Floodplains provide habitat, food and recruitment opportunities for fishes and other fauna.

A key question for managers restoring riparian corridors is ‘how wide is wide enough’? The minimal answer could be wide enough to enable full development of the vegetation canopy to maximize shade across the relevant water body and form an adequate mesic (moist, humid) micro-climate. A more informed answer is that the full width of the regularly inundated riparian and floodplain land should be restored.

Systems of river corridor protected areas have been established in many jurisdictions around the world based on criteria such as biological importance, maintaining free-flowing ecological processes and supporting cultural values. Increasingly dams and levee banks are being removed from rivers and their floodplains to restore ecosystem functions and services. Restoration of functional riparian and floodplain systems may aid flood management and enhance other climate change adaptation measures.

Sustainability challenges for nature and people are complex and interconnected, such that effective solutions require approaches and a common theory of change that bridge disparate disciplines and sectors. Causal chains offer promising approaches to achieving an integrated understanding of how actions affect ecosystems, the goods and services they provide, and ultimately, human well-being. Although causal chains and their variants are common tools across disciplines, their use remains highly inconsistent, limiting their ability to support and create a shared evidence base for joint actions. In this article, we present the foundational concepts and guidance of causal chains linking disciplines and sectors that do not often intersect to elucidate the effects of actions on ecosystems and society. We further discuss considerations for establishing and implementing causal chains, including nonlinearity, trade-offs and synergies, heterogeneity, scale, and confounding factors. Finally, we highlight the science, practice, and policy implications of causal chains to address real-world linked human–nature challenges.

The meta-ecosystem approach has significantly advanced ecosystem science and landscape ecology by explicitly addressing the flow of elements (live organisms, biotic and abiotic materials) among ecosystems at different temporal and spatial scales [1,2]. Gounand et al. [3] recently argued that the conciliation of theoretical and empirical studies on meta-ecosystems needs better quantification of spatial flows in terms of movements (dispersal, foraging, life-cycle, and migration), feedbacks, and resources.

The time of day that nestlings fledge from a nest is thought to be shaped by predation risk and energetics. To minimize predation risk, fledging is predicted to start as early in the day as possible so that nestlings can maximize time outside the nest to find a safe place to stay before nightfall. Fledging times are predicted to be tightly grouped and to not be affected by the number of nestlings, given that all nestlings are responding to the same relative risk of predation. Conversely, energetic considerations predict that fledging time of day should vary so that nestlings can maximize energy intake before having to forage for themselves. However, data to evaluate the relative importance of these drivers in grassland birds are scarce because of the difficulty of observing nestlings as they fledge. We used nest surveillance video from 178 nests to evaluate how the initiation and duration of fledging varied among 7 grassland passerine species, as well as by the number of nestlings in the nest and fledging date. Fledging initiation varied most strongly by species, with some effects of date. Across species, the median start time of fledging was 4.55 hr after sunrise. Fledging before the solstice started 30 min earlier compared to fledging at or after the solstice. Fledging duration increased with number of nestlings in the nest and was spread over >1 day in 21% of nests. While our results primarily supported the hypothesis that fledging is motivated by energetic considerations, additional data on basic life history traits and behavior will be needed to fully understand how fledging grassland birds balance energetics against predation risk.

As editors, we mark the launch of Conservation Science and Practice, a journal of the Society for Conservation Biology (SCB), with the following remarks framing the purpose and aspirations of the journal. Our aim is to share scholarship on and experiences of the practice of conservation. We define conservation practice as the application of conservation principles or theory across conservation issues, from planning and directly managing nature to influencing public policy and private behaviors—at scales from local communities to international governing bodies. We are striving for Conservation Science and Practice to be a forum for sharing lessons learned from research and practice to reciprocally informing and improving both arenas.

Many human populations are dependent on marine ecosystems for a range of benefits, but we understand little about where and to what degree people rely on these ecosystem services. We created a new conceptual model to map the degree of human dependence on marine ecosystems based on the magnitude of the benefit, susceptibility of people to a loss of that benefit, and the availability of alternatives. We focused on mapping nutritional, economic, and coastal protection dependence, but our model is repeatable, scalable. applicable to other ecosystems, and designed to incorporate additional services and data. Here we show that dependence was highest for Pacific and Indian Ocean island nations and several West African countries. More than 775 million people live in areas with relatively high dependence scores. By identifying where and how people are dependent on marine ecosystems, our framework can be used to design more effective large-scale management and policy interventions.

The Javan rhino (Rhinoceros sondaicus) is one of the most threatened mammals on Earth. The only remaining individuals live as part of a small population isolated in a single protected area, Ujung Kulon National Park, Java, Indonesia. Despite almost a century of studies, little is known about the factors that affect Javan rhino demography and distribution. National park officials require such information to identify conservation strategies and track the success and failures of these efforts; translocating selected individuals to establish a second population has been considered, but the risks must be weighed. We show that the 2013 global population of Javan rhinos was 62 individuals, which is likely near the site's carrying capacity. Our analysis of rhino distribution indicates that tsunamis are a significant risk to the species in Ujung Kulon, justifying the risks of establishing additional populations. Continued individual-based monitoring is needed to guide future translocation decisions.

The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50-90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.

There is increasing interest in mining minerals on the seabed, including seafloor massive sulfide deposits that form at hydrothermal vents. The International Seabed Authority is currently drafting a Mining Code, including environmental regulations, for polymetallic sulfides and other mineral exploitation on the seabed in the area beyond national jurisdictions. This paper summarizes 1) the ecological vulnerability of active vent ecosystems and aspects of this vulnerability that remain subject to conjecture, 2) evidence for limited mineral resource opportunity at active vents, 3) non-extractive values of active vent ecosystems, 4) precedents and international obligations for protection of hydrothermal vents, and 5) obligations of the International Seabed Authority under the UN Convention on the Law of the Sea for protection of the marine environment from the impacts of mining. Heterogeneity of active vent ecosystems makes it extremely challenging to identify "representative" systems for any regional, area-based management approach to conservation. Protection of active vent ecosystems from mining impacts (direct and indirect) would set aside only a small fraction of the international seabed and its mineral resources, would contribute to international obligations for marine conservation, would have non-extractive benefits, and would be a precautionary approach.

Incremental adaptation may be inadequate to deal with rapid shifts and tipping points for food production under climate change. The concepts of transformative and transformational adaptation have emerged in recent years to address the need for major, non-marginal transitions in sectors, such as agriculture in response to climate change. However, there is less empirical evidence of transformation in practice. Here we use a simple semi-quantitative definition to identify recorded cases of transformational adaptation in response to climate change. A structured search of academic literature found 23 empirical case studies that meet our criteria for transformation of agriculture under climate change: a response to climate risks along with a redistribution of at least a third in the primary factors of production (land, labor, capital) or the outputs and outcomes of production over a time period of 25 years or less.

Degradation of freshwater ecosystems and the services they provide is a primary cause of increasing water insecurity, raising the need for integrated solutions to freshwater management. While methods for characterizing the multi-faceted challenges of managing freshwater ecosystems abound, they tend to emphasize either social or ecological dimensions and fall short of being truly integrative. This paper suggests that management for sustainability of freshwater systems needs to consider the linkages between human water uses, freshwater ecosystems and governance. We present a conceptualization of freshwater resources as part of an integrated social-ecological system and propose a set of corresponding indicators to monitor freshwater ecosystem health and to highlight priorities for management. We demonstrate an application of this new framework—the Freshwater Health Index (FHI)—in the Dongjiang River Basin in southern China, where stakeholders are addressing multiple and conflicting freshwater demands. By combining empirical and modeled datasets with surveys to gauge stakeholders' preferences and elicit expert information about governance mechanisms, the FHI helps stakeholders understand the status of freshwater ecosystems in their basin, how ecosystems are being manipulated to enhance or decrease water-related services, and how well the existing water resource management regime is equipped to govern these dynamics over time. This framework helps to operationalize a truly integrated approach to water resource management by recognizing the interplay between governance, stakeholders, freshwater ecosystems and the services they provide.

Climate change mitigation scenarios are finding a wider set of users, including companies and financial institutions. Increased collaboration between scenario producers and these new communities will be mutually beneficial, educating companies and investors on climate risks while grounding climate science in real-world needs.

2017

There is growing interest in sustainable intensification of aquaculture production. Yet little economic analysis has been done on farm-level effects of the economic sustainability of production intensification. Data from 83 shrimp farms (43 in Vietnam and 40 in Thailand) were used to identify (through principal component and cluster analyses) 13 clusters of management practices that reflected various scales of production intensity that ranged from 0–1999 kg/ha/crop to 10,000 kg/ha/crop and above, for both Penaeus monodon and Litopenaeus vannamei in Vietnam and Thailand. The clusters identified reflected sets of management practices that resulted in differing yields despite similarities in stocking densities among some clusters. The enterprise budget analysis developed showed that the more intensively managed clusters outperformed the less intensively managed clusters in economic terms. More intensively managed farm clusters had lower costs per metric ton of shrimp produced and were more profitable. The greater yields of shrimp produced per hectare of land and water resources in more intensively managed shrimp farms spread annual fixed costs across a greater volume of shrimp produced and reduced the cost per metric ton of shrimp. Costs per metric ton of shrimp produced decreased from the lowest to the highest intensity level (from US$10,245 at lowest intensity to US$3484 at highest for P. monodon and from US$24,301 to US$5387 for L. vannamei in Vietnam and from US$8184 at the lowest intensity level to US$3817 at the highest intensity level per metric ton for L. vannamei in Thailand). Costs of pond amendments used in shrimp production were particularly high in Vietnam and largely unwarranted, whereas fixed costs associated with the value of land, production facilities, equipment, and labor were sufficiently high in Thailand so that net returns were negative in the long run. Nevertheless, economic losses in Thailand were less at greater levels of intensification. The study demonstrated a clear value proposition for shrimp farmers to use natural resources (such as land) and other inputs in an efficient manner and supports findings from corresponding research on farm-level natural resource use efficiency. Additional research that incorporates economic analysis into on-farm studies of sustainable intensification of aquaculture is needed to provide ongoing guidance related to sustainable management practices for aquaculture.

Background Despite the connections between terrestrial and marine/freshwater livelihood strategies that we see in coastal regions across the world, the contribution of wild fisheries and fish farming is seldom considered in analyses of the global food system and is consequently underrepresented in major food security and nutrition policy initiatives. Understanding the degree to which farmers also consume fish, and how fishers also grow crops, would help to inform more resilient food security interventions. Results By compiling a dataset for 123,730 households across 6781 sampling clusters in 12 highly food-insecure countries, we find that between 10 and 45% of the population relies on fish for a core part of their diet. In four of our sample countries, fish-reliant households are poorer than their counterparts. Five countries show the opposite result, with fish-reliant households having higher household asset wealth. We also find that in all but two countries, fish-reliant households depend on land for farming just as much as do households not reliant on fish. Conclusions These results highlight the need for food security interventions that combine terrestrial and marine/freshwater programming if we are going to be successful in building a more resilient food system for the world’s most vulnerable people. Keywords Food security – Fish – Livelihoods – Wealth – Farming

The Missouri River Basin (MRB) functions as the “life zone” for the larger Mississippi River Basin, providing grassland habitat that infiltrates precipitation and recharges groundwater, reduces sediment erosion, filters nutrients, stores carbon, and provides critical habitat for wildlife. The role of this region as a producer of food and fuel, both nationally and internationally, creates unique challenges for conservation. To support conservation efforts and sustainable management of this invaluable resource, a large-scale, screening-level evaluation of the water quantity and quality benefits of land conservation efforts in the MRB was performed. This paper describes the development and application of a Soil and Water Assessment Tool (SWAT) model to the MRB study area to provide estimates of water quantity and quality (sediment, total phosphorus, total nitrogen) benefits from the avoided conversion of intact grassland to cultivated cropland. The results of this study indicate that the avoided conversion of grassland to cropland could potentially prevent more than 1.7 trillion gallons of surface runoff as well as prevent the export of approximately 46 million tons of sediment, 87 million pounds of total phosphorus, and 427 million pounds of total nitrogen from the MRB study area landscape every year.

Sufficiently rigorous monitoring and evaluation can assess the effectiveness of management actions to conserve natural resources. However, costs of monitoring can be high in relation to program budgets, so it is critical to design monitoring efforts to ensure a high return on investment. To assess the relative contribution of different monitoring strategies to yield information for management decisions, we examine the evolution of a multi-year monitoring program across several MPAs in West Papua, Indonesia. Three monitoring strategies were implemented: external expert, science practitioner, and community monitoring staff. We place the monitoring objectives in a decision science framework, with six explicit fundamental objectives for monitoring to evaluate performance of marine protected areas. We examine each strategy in light of the six objectives to evaluate: 1) power to detect change, 2) extent of local capacity development, and 3) cost effectiveness. Over time, costs were reduced and scientific value increased through clear communication of science objectives, outcome-driven experimental design, adequately resourced monitoring programs, and a long-term view that anticipates phasing out outside consultants and transitioning monitoring responsibilities fully to locally-based staff. Investments to develop capacity of staff living locally to perform data management, analysis, interpretation, and science communication proved the most cost-effective approach in the long-term. With many globally important ecosystems in developing countries, developing local scientific capacity for the full cycle of monitoring is key to informed decision-making and ensuring long-term sustainability of efforts to conserve biodiversity.

Marine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.

It is necessary, yet challenging, to manage coral reefs to simultaneously address a suite of global and local stressors that act over the short and long term. Therefore, managers need practical guidance on prioritizing the locations and types of conservation that most efficiently address their goals using limited resources.

This study is one of the first examples of a vulnerability assessment for coral reefs that uses downscaled global climate change projections and local anthropogenic stress data to prioritize coral reef locations for conservation investment. Vulnerability was separated into manageable and unmanageable components (bleaching likelihood and local anthropogenic stressors, respectively), and the highest priority was given to places with low levels of unmanageable threats and high levels of manageable threats. Following prioritization, resilience characteristics were derived from standard reef monitoring data and used to identify the specific conservation strategies most likely to succeed given local ecological conditions and threats.

Using Indonesian coral reefs as a case study, 9.1% of total coral reef area was identified as of high conservation priority, including parts of Raja Ampat, Sulawesi, and Sumatra that are not currently included in marine protected areas (MPAs).

Existing MPAs tend to be located in areas less threatened by local-scale anthropogenic activities, which has implications for both the implementation costs and the likely impact of conservation investment. This approach employs common and publicly available data and can therefore be replicated wherever managers face the familiar challenge of allocating limited conservation resources in the face of rapid global change and uncertainty.

The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

We examined environmental and anthropogenic factors drive range loss in large mammals, using presence data of Amur tigers opportunistically collected between 2000 and 2012, and anthropogenic and environmental variables to model the distribution of the Amur tiger in northeastern China. Our results suggested that population distribution models of different subregions showed different habitat factors determining tiger population distribution patterns. Where farmland cover was over 50 km2 per pixel (196 km2), distance was within 15 km to the railway in Changbaishan and road density (length per pixel) increased in Wandashan, the relative probability of Amur tiger occurrence exhibited monotonic avoidance responses; however, where distance was within 150 km of the Sino-Russia border, the occurrence probability of Amur tiger was relatively high. We analyzed the avoidance or preference responses of Amur tiger distribution to elevation, snow depth and Viewshed. Furthermore, different subregional models detected a variety of spatial autocorrelation distances due to different population clustering patterns. We found that spatial models significantly improved model fits for non-spatial models and made more robust habitat suitability predications than that of non-spatial models. Consequently, these findings provide useful guidance for habitat conservation and management.

Several competing human behavior models have been proposed to model boundedly rational adversaries in repeated Stackelberg Security Games (SSG). However, these existing models fail to address three main issues which are detrimental to defender performance. First, while they attempt to learn adversary behavior models from adversaries' past actions (“attacks on targets”), they fail to take into account adversaries' future adaptation based on successes or failures of these past actions. Second, existing algorithms fail to learn a reliable model of the adversary unless there exists sufficient data collected by exposing enough of the attack surface – a situation that often arises in initial rounds of the repeated SSG. Third, current leading models have failed to include probability weighting functions, even though it is well known that human beings' weighting of probability is typically nonlinear.
To address these limitations of existing models, this article provides three main contributions. Our first contribution is a new human behavior model, SHARP, which mitigates these three limitations as follows: (i) SHARP reasons based on success or failure of the adversary's past actions on exposed portions of the attack surface to model adversary adaptivity; (ii) SHARP reasons about similarity between exposed and unexposed areas of the attack surface, and also incorporates a discounting parameter to mitigate adversary's lack of exposure to enough of the attack surface; and (iii) SHARP integrates a non-linear probability weighting function to capture the adversary's true weighting of probability. Our second contribution is a first “repeated measures study” – at least in the context of SSGs – of competing human behavior models. This study, where each experiment lasted a period of multiple weeks with individual sets of human subjects on the Amazon Mechanical Turk platform, illustrates the strengths and weaknesses of different models and shows the advantages of SHARP. Our third major contribution is to demonstrate SHARP's superiority by conducting real-world human subjects experiments at the Bukit Barisan Seletan National Park in Indonesia against wildlife security experts.

Overfishing threatens the sustainability of coastal marine biodiversity, especially in tropical developing countries. To counter this problem, about 200 governments worldwide have committed to protecting 10%–20% of national coastal marine areas. However, associated impacts on fisheries productivity are unclear and could weaken the food security of hundreds of millions of people who depend on diverse and largely unregulated fishing activities. Here, we present a systematic theoretic analysis of the ability of reserves to rebuild fisheries under such complex conditions, and we identify maximum reserve coverages for biodiversity conservation that do not impair long-term fisheries productivity. Our analysis assumes that fishers have no viable alternative to fishing, such that total fishing effort remains constant (at best). We find that realistic reserve networks, which protect 10%–30% of fished habitats in 1–20 km wide reserves, should benefit the long-term productivity of almost any complex fishery. We discover a “rule of thumb” to safeguard against the long-term catch depletion of particular species: individual reserves should export 30% or more of locally produced larvae to adjacent fishing grounds. Specifically on coral reefs, where fishers tend to overexploit species whose dispersal distances as larvae exceed the home ranges of adults, decisions on the size of reserves needed to meet the 30% larval export rule are unlikely to compromise the protection of resident adults. Even achieving the modest Aichi Target 11 of 10% “effective protection” can then help rebuild depleted catch. However, strictly protecting 20%–30% of fished habitats is unlikely to diminish catch even if overfishing is not yet a problem while providing greater potential for biodiversity conservation and fishery rebuilding if overfishing is substantial. These findings are important because they suggest that doubling or tripling the only globally enforced marine reserve target will benefit biodiversity conservation and higher fisheries productivity where both are most urgently needed.

Marine reserves are a commonly applied conservation tool, but their size is often chosen based on considerations of socioeconomic rather than ecological impact. Here, we use a simple individual-based model together with the latest empirical information on home ranges, densities and schooling behaviour in 66 coral reef fishes to quantify the conservation effectiveness of various reserve sizes. We find that standard reserves with a diameter of 1–2 km can achieve partial protection (≥50% of the maximum number of individuals) of 56% of all simulated species. Partial protection of the most important fishery species, and of species with diverse functional roles, required 2–10 km wide reserves. Full protection of nearly all simulated species required 100 km wide reserves. Linear regressions based on the mean home range and density, and even just the maximum length, of fish species approximated these results reliably, and can therefore be used to support locally effective decision making.

Developing and institutionalizing cross-sectoral approaches to sustainable land use remains a crucial, yet politically contested, objective in global sustainability governance. There is a widely acknowledged need for more integrated approaches to sustainable land use that reconcile multiple landscape functions, sectors and stakeholders. However, this faces a number of challenges in practice, including the lack of policy coherence and institutional conflicts across agricultural and forest sectors. In this context, the global climate change mitigation mechanism of “reducing emissions from deforestation and forest degradation” (REDD+) has been flagged as a unique opportunity to stimulate the development and institutionalization of more integrated, “landscape” approaches to sustainable land use. In this article, we provide a reality check for the prospects of REDD+ to deliver on this promise, through analyzing three pioneer cases of REDD+ development and implementation in Brazil, Ecuador, and Mexico. We analyze how REDD+ has operated in each of these three contexts, based on field work, key-informant interviews, and analysis of primary and secondary documents. Our findings suggest that REDD+ has stimulated development of “niche” sustainable land-use investments in each case, which aim to integrate forest conservation and agricultural development goals, but has done so while competing with business-as-usual incentives. We conclude that national and international political commitment to more integrated and sustainable land-use approaches is a precondition for, rather than a result of, transformative REDD+ interventions.

The Nile crocodile, Crocodylus niloticus, is found throughout sub-Saharan Africa, including Namibia, Botswana and Angola. The species was transferred from CITES Appendix I to Appendix II in 2004, although it is recognized as peripherally endangered in Namibia due to diminishing habitat availability primarily from human encroachment. In 2013, a species management plan was approved in Namibia to assess the management of the Namibian Nile crocodile populations. During 2012, an aerial survey was conducted to provide an estimate of Nile crocodile population numbers. A recently developed N-mixture model for estimation of abundance and spatial variation was used. Detection probability correlated to animal size and environmental covariates. Our data also suggest that small crocodiles are easier to detect during the spring. The abundance for different size classes was influenced by river complexity (vegetation, depth, channels) and the distribution of human settlements. An estimated 806 individuals were counted along the 352 km Namibian portion of the Kunene River system with a conservative estimate of 562 crocodiles regardless of size. The parameter estimates generated by the analysis suggested that the class-structured model can produce reliable estimates of total abundance and of local abundance for this section in the Kunene River system.

Inclusion of ecosystem services (ES) information into national-scale development and climate adaptation planning has yet to become common practice, despite demand from decision makers. Identifying where ES originate and to whom the benefits flow–under current and future climate conditions–is especially critical in rapidly developing countries, where the risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how ecosystems provide key benefits to the country’s people and infrastructure. We model the supply of and demand for sediment retention, dry-season baseflows, flood risk reduction and coastal storm protection from multiple beneficiaries. We find that locations currently providing the greatest amount of services are likely to remain important under the range of climate conditions considered, demonstrating their importance in planning for climate resilience. Overlap between priority areas for ES provision and biodiversity conservation is higher than expected by chance overall, but the areas important for multiple ES are underrepresented in currently designated protected areas and Key Biodiversity Areas. Our results are contributing to development planning in Myanmar, and our approach could be extended to other contexts where there is demand for national-scale natural capital information to shape development plans and policies.

Temperate grasslands are a highly threatened global biome. Complicating management and conservation strategy development, modern grasslands can be difficult to characterize across landscapes since they range from native and semi-native to completely non-native species compositions such as those found in heavily managed pastures. Similar to methods used to differentiate C3 and C4 grasses, we investigate the ability of using temporal variations in growth characteristics as an alternative pathway to predicting native versus introduced species composition across grassland landscapes. To do this, we conducted an exploratory analysis using a time-series of Normalized Difference Vegetation Index values as a measure of vegetation greenness with Landsat 5 TM imagery across a growing season and performed an unsupervised classification. Results from the classification were compared with field observation to determine if we can differentiate between native and introduced grassland types in the Northwest Glaciated Plains subecoregion of northeastern Montana. Our results indicated that we predicted grassland cover with 81% accuracy within our 200 km2 study area and 71% accuracy in our 5000 km2 secondary study area. Further extrapolation of our methodology, combined with the refinement of vegetation indices of time-series imagery, classification algorithms and the availability of data from planned Landsat and Sentinel missions, may provide the spatial detail necessary to improve grassland monitoring and rangeland management over large areas.

Increasing the size and number of marine protected areas (MPAs) is widely seen as a way to meet ambitious biodiversity and sustainable development goals. Yet, debate still exists on the effectiveness of MPAs in achieving ecological and societal objectives. Although the literature provides significant evidence of the ecological effects of MPAs within their boundaries, much remains to be learned about the ecological and social effects of MPAs on regional and seascape scales. Key to improving the effectiveness of MPAs, and ensuring that they achieve desired outcomes, will be better monitoring that includes ecological and social data collected inside and outside of MPAs. This can lead to more conclusive evidence about what is working, what is not, and why. Eight authors were asked to write about their experiences with MPA effectiveness. The authors were instructed to clearly define “effectiveness” and discuss the degree to which they felt MPAs had achieved or failed to be effective. Essays were exchanged among authors and each was invited to write a shorter “counterpoint.” The exercise shows that, while experiences are diverse, many authors found common ground regarding the role of MPAs in achieving conservation targets. This exchange of perspectives is intended to promote reflection, analysis, and dialogue as a means for improving MPA design, assessment, and integration with other conservation tools.

Improving water quality and other ecosystem services in agriculturally dominated watersheds is an important policy objective in many regions of the world. A major challenge is overcoming the associated costs to agricultural producers. We integrate spatially-explicit models of ecosystem processes with agricultural commodity production models to analyze the biophysical and economic consequences of alternative land use and land management patterns to achieve Total Maximum Daily Loads targets in a proto-typical agricultural watershed. We apply these models to find patterns that maximize water quality objectives for given levels of foregone agricultural profit. We find it is possible to reduce baseline watershed phosphorus loads by ~ 20% and sediment loads by ~ 18% without any reduction in agricultural profits. Our results indicate that meeting more stringent targets will result in substantial economic loss. However, when we add the social benefits from water quality improvement and carbon sequestration to private agricultural net returns we find that water quality improvements up to 50% can be obtained at no loss to societal returns. The cost of meeting water quality targets will vary over time as commodity and ecosystem service prices fluctuate. If crop prices drop or the value of ecosystem services increase, then achieving higher water quality goals will be less costly.

The Javan rhino (Rhinoceros sondaicus) is one of the most threatened mammals on Earth. The only remaining individuals live as part of a small population isolated in a single protected area, Ujung Kulon National Park, Java, Indonesia. Despite almost a century of studies, little is known about the factors that affect Javan rhino demography and distribution. National park officials require such information to identify conservation strategies and track the success and failures of these efforts; translocating selected individuals to establish a second population has been considered, but the risks must be weighed. We show that the 2013 global population of Javan rhinos was 62 individuals, which is likely near the site's carrying capacity. Our analysis of rhino distribution indicates that tsunamis are a significant risk to the species in Ujung Kulon, justifying the risks of establishing additional populations. Continued individual-based monitoring is needed to guide future translocation decisions.

To the Nakoda and Dakota people, bison are seen as a people, Tatanga/Tatanka Oyate, or Buffalo People. In 2012, the Fort Peck Tribes in Montana (Sioux and Assiniboine) had the opportunity to bring back a herd of heritage bison from Yellowstone National Park to Fort Peck reservation lands; in 2014, an additional herd was returned to reservation lands. Seeing this as an opportunity to connect and re-connect with their relations, Tatanga/Tatanka Oyate, and to educate the young people in their communities about the historic and cultural importance of buffalo, the Fort Peck Tribes embarked on a community initiative in conjunction with the return of the buffalo to reservation land. In this article, Roxann Smith, Robert McAnally, Lois Red Elk, Elizabeth Bird, Elizabeth Rink, Dennis Jorgensen, and Julia Haggerty, collaborators from three different institutions involved in this initiative, document the efforts to educate about and re-connect with the buffalo, as well as their own research inquiry process, which involved utilizing community-based participatory research methods to investigate four strands of inquiry, education, and service: the impact of buffalo restoration on the Fort Peck Tribes, the Buffalo People Summit (a community education and outreach event), an oral history project documenting the history of buffalo restoration in Fort Peck, and the Buffalo Values Survey, an effort to understand community perception and needs regarding the management of the buffalo herds and wildlife conservation. This initiative, involving a collaboration among the Fort Peck Tribes, Fort Peck Community College, Montana State University, and the World Wildlife Fund, is collectively known as the Fort Peck Buffalo Project.

2016

Protected areas are a cornerstone strategy for terrestrial and increasingly marine biodiversity conservation, but their use for conserving inland waters has received comparatively scant attention. In 2010, the Convention on Biological Diversity (CBD) included a target of 17% protection for inland waters, yet there has been no meaningful way of measuring progress toward that target. Defining and evaluating ‘protection’ is especially complicated for rivers because their integrity is intimately linked to impacts in their upstream catchments. A new generation of global hydrographic data now enables a high-resolution, standardized assessment of how upland activities may be propagated downstream. Here we develop and apply, globally, a river protection metric that integrates both local and upstream catchment protection. We found that ‘integrated’ river protection is highly variable across geographies and river size classes and in most basins falls short of the 17% CBD target. Around the world about 70% of river reaches (by length) have no protected areas in their upstream catchments, and only 11.1% (by length) achieve full integrated protection. The average level of integrated protection is 13.5% globally, yet the majority of the world's largest basins show averages below 10%. Within basins, gaps are particularly severe for larger rivers.

Studies of heat shock response show a correlation with local climate, although this is more often across altitudinal than latitudinal gradients. In the present study, differences in constitutive but not inducible components of heat shock response are detected among populations of the Glanville fritillary butterfly Melitaea cinxia L. that exist at the species' latitudinal range limits (Finland and Spain). The study demonstrates that macroclimatic differences between these sites should cause greater exposure of the Spanish population to higher temperatures. Thermal stress treatments are used to estimate differences in the expression of four genes potentially relevant for tolerating these temperatures. For the analysis, three heat-shock proteins and glyceraldehyde-3-phosphate dehydrogenase (G3PDH), a glycolysis enzyme that also modulates cell growth based on metabolic state, are chosen. Two constitutive differences are found between the sites. First, insects from Spain have higher levels of Hsp 21.4 than those from Finland regardless of thermal stress treatment; this protein is not inducible. Second, insects from Finland have higher levels of G3PDH. The two remaining Hsps, Hsp20.4 and Hsp90, show dramatic up-regulation at higher temperatures, although there are no significant differences between insects from the different populations in either constitutive levels or inducibility. In nature, differences between the study populations likely occur in the expression of all four genes that were studied, although these differences would be directly climate-induced in Hsp20.4 and Hsp90 and constitutive in Hsp21.4 and G3PDH. Inducibility may mitigate the need for constitutive variation in traits that adapt insects to local climate.

The swift fox (Vulpes velox) is a small grassland canid native to the North American Great Plains. A reintroduced swift fox population in Canada and northern Montana appears to be isolated from those existing in the central and southern Great Plains. We developed a swift fox habitat suitability model for southeastern Montana, the region between the 2 populations. The resulting model indicated that 67.9% of the study area consisted of highly suitable habitat. We conducted a least-cost path analysis to evaluate the connectivity of swift fox habitat in the study area to existing swift fox populations in the region. We identified a potential dispersal corridor through southeastern Montana that could facilitate movement between swift fox populations in northern Montana and northern Wyoming and identified 4 prairie dog complexes in Rosebud, Custer, and Powder River Counties, Montana, that could serve as potential swift fox reintroduction sites. Each site comprised several prairie dog colonies in close proximity and encompassed ? 95 km2. We evaluated the effect that swift fox populations established in each potential reintroduction site could have on population connectivity. Our results as well as future surveys could inform swift fox management and reintroduction programs in Montana.

Resource use was investigated at 34 Litopenaeus vannamei and five Penaeus monodon farms in Thailand and 30 L. vannamei and 24 P. monodon farms in Vietnam. Farms varied in water surface areas for production, reservoirs, canals, and settling basins; in pond size and depth; and in water management, stocking density, feeding rate, amendment input, aeration rate, crop duration, and crops per year. Production of L. vannamei averaged 17.3 and 10.9?m.t./ha/yr, and feed conversion ratio averaged 1.49 and 1.33 in Thailand and Vietnam, respectively. On average, production of 1?m.t. of L. vannamei required 0.58?ha land, 5,400?m3 water, 60?GJ energy, and 1218?kg wildfish in Thailand and 1.76?ha land, 15,100?m3 water, 33.7?GJ energy, and 1264?kg wildfish in Vietnam. Resource use per metric ton of shrimp declined with greater production intensity. In Thailand, P. monodon was produced at 0.2–0.4?m.t./ha/yr, with no inputs but water and postlarvae. In Vietnam, P. monodon production averaged 3.60?m.t./ha/yr. Production of 1?m.t. of P. monodon required 0.80?ha land, 36,000?m3 water, 47.8?GJ energy, and 1180?kg wildfish, and resource use per ton production declined with increasing production intensity.

Reducing gender inequality is a major policy concern worldwide, and one of the Sustainable Development Goals. However, our understanding of the magnitude and spatial distribution of gender inequality results either from limited-scale case studies or from national-level statistics. Here, we produce the first high resolution map of gender inequality by analyzing over 689,000 households in 47 countries. Across these countries, we find that male-headed households have, on average, 13% more asset wealth and 303% more land for agriculture than do female-headed households. However, this aggregate global result masks a high degree of spatial heterogeneity, with bands of both high inequality and high equality apparent in countries and regions of the world. Further, areas where inequality is highest when measured by land ownership generally are not the same areas that have high inequality as measured by asset wealth. Our metrics of gender inequality in land and wealth are not strongly correlated with existing metrics of poverty, development, and income inequality, and therefore provide new information to increase the understanding of one critical dimension of poverty across the globe.

Conversion of grassland to cropland has accelerated over the past decade due to high crop prices, government incentives and a growing global human population. Conversion of grasslands leads to loss of habitat and threatens the ability of the land to provide ecosystem services, such as carbon sequestration, water filtration and reduced erosion. We developed a method for identifying remaining intact habitat across the Mississippi River Basin-Great Plains geography by stacking subsequent years of the Cropland Data Layer (United States) and Annual Crop Inventory (Canada). We call the resulting cumulative plowed lands the “plowprint”. The total size of the plowprint increased by 27,159,278 ha from 2009-2013. As of 2013, approximately one-third of the study area had been plowed. We conclude that developing the ability to monitor cumulative change over time will allow disparate agencies and organizations to align their goals, strategies and activities, and measure progress in a uniform way.

Land use and land use change are main drivers of biodiversity loss and degradation of a broad range of ecosystem services (MEA 2005). Despite substantial contributions to address land use impacts on biodiversity in LCA in the last decade (Schmidt 2008, de Baan et al. 2013a, Souza et al. 2013, Coelho and Michelsen 2014, LEAP 2015), including work coordinated by the UNEP SETAC Life Cycle Initiative (Milà i Canals et al. 2007; Koellner et al. 2013a; 2013b, Teixeira et al. 2016, Curran et al. 2016), no clear consensus exists on the use of a specific impact indicator. This lack of consensus not only limits the application of existing models, but also imposes constraints on the comparability of results of different studies evaluating land use impacts while applying different models. Therefore, the scope of this chapter is to give advice on defining a modeling approach and related indicator(s) adequately reflecting impacts of land use on biodiversity. The framework should be applicable on a local, regional, and global scale, and able to differentiate the diverse land use intensities as much as possible (Teixeira et al. 2016). Furthermore, it has to be linked with data availability in the life cycle inventory.

Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.

The Strategic Plan for Biodiversity (2011–2020), adopted at the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, sets 20 Aichi Biodiversity Targets to be met by 2020 to address biodiversity loss and ensure its sustainable and equitable use. Aichi Biodiversity Target 11 describes what an improved conservation network would look like for marine, terrestrial and inland water areas, including freshwater ecosystems. To date, there is no comprehensive assessment of what needs to be achieved to meet Target 11 for freshwater biodiversity. Reports on implementation often fail to consider explicitly freshwater ecosystem processes and habitats, the pressures upon them, and therefore the full range of requirements and actions needed to sustain them. Here the current progress and key gaps for meeting Aichi Target 11 are assessed by exploring the implications of each of its clauses for freshwater biodiversity. Concerted action on Aichi Biodiversity Target 11 for freshwater biodiversity by 2020 is required in a number of areas: a robust baseline is needed for each of the clauses described here at national and global scales; designation of new protected areas or expansion of existing protected areas to cover known areas of importance for biodiversity and ecosystem services, and a representative sample of biodiversity; use of Other Effective Area-Based Conservation Measures (OECMs) in places where designating a protected area is not appropriate; and promoting and implementing better management strategies for fresh water in protected areas that consider its inherent connectivity, contextual vulnerability, and required human and technical capacity. Considering the specific requirements of freshwater systems through Aichi Biodiversity Target 11 has long-term value to the Sustainable Development Goals discussions and global conservation policy agenda into the coming decades.

Larval dispersal by ocean currents is a critical component of systematic marine protected area (MPA) design. However, there is a lack of quantitative methods to incorporate larval dispersal in support of increasingly diverse management objectives, including local population persistence under multiple types of threats (primarily focused on larval retention within and dispersal between protected locations) and benefits to unprotected populations and fisheries (primarily focused on larval export from protected locations to fishing grounds). Here, we present a flexible MPA design approach that can reconcile multiple such potentially conflicting management objectives by balancing various associated treatments of larval dispersal information. We demonstrate our approach based on alternative dispersal patterns, combinations of threats to populations, management objectives, and two different optimization strategies (site vs. network-based). Our outcomes highlight a consistently high efficiency in selecting priority locations that are self-replenishing, inter-connected, and/or important larval sources. We find that the opportunity to balance these three dispersal attributes flexibly can help not only to prevent meta-population collapse, but also to ensure effective fisheries recovery, with average increases in the number of recruits at fishing grounds at least two-times higher than achieved by standard habitat-based or ad-hoc MPA designs. Future applications of our MPA design approach should therefore be encouraged, specifically where management tools other than MPAs are not feasible.

Marine protected areas (MPAs) have historically been implemented and managed in a top-down way, excluding resource-dependent users from planning and management. In response to conflict and non-compliance, the governance of marine resources is increasingly embracing community-based approaches, assuming that by putting communities at the forefront of planning and management, participation will increase, causing positive social and ecological impacts. Given the relative newness of community-based MPAs, this study explores how resource users perceive their impacts on ecosystem services (ES) and human well-being (HWB). This study explores two community-based MPAs called tengefus in Kenya using mixed qualitative methods, including a participatory photography method called photovoice. Participation in and donor support for tengefus influences how resource users perceived tengefus and their impacts on ES and HWB. Individuals who were engaged in the tengefu from the inception or held official positions perceived more positive impacts on ES and HWB compared to those not as involved. Tengefus were often viewed by communities as attractors for external support and funding, positively influencing attitudes and feelings towards conservation. One site, the first tengefu in Kenya, had more external support and was surrounded by positive perceptions, while the other site had little external support and was surrounded by more conflict and mixed perceptions. This study exemplifies the complex social-political dynamics that MPAs create and are embedded within. Community-based MPA initiatives could benefit from ensuring widespread engagement throughout the inception, implementation and management, recognizing and managing expectations around donor support, and not assuming that benefits spillover throughout the community.

Global policy initiatives and international conservation organizations have sought to emphasize and strengthen the link between the conservation of natural ecosystems and human development. While many indices have been developed to measure various social outcomes to conservation interventions, the quantity and strength of evidence to support the effects, both positive and negative, of conservation on different dimensions of human well-being, remain unclear, dispersed and inconsistent.

Migrations of most animal taxa are declining as a result of anthropogenic pressures and land-use transformation. Here, we document and characterize a previously unknown multi-country migration of Burchell's zebra Equus quagga that is the longest of all recorded large mammal migrations in Africa. Our data from eight adult female zebras collared on the border of Namibia and Botswana show that in December 2012 all individuals crossed the Chobe River and moved due south to Nxai Pan National Park in Botswana, where they spent a mean duration of 10 weeks before returning, less directly, to their dry season floodplain habitat. The same southward movements were also observed in December 2013. Nxai Pan appeared to have similar environmental conditions to several possible alternative wet season destinations that were closer to the dry season habitat on the Chobe River, and water availability, but not habitat or vegetation biomass, was associated with higher-use areas along the migratory pathway. These results suggest a genetic and/or cultural basis for the choice of migration destination, rather than an environmental one. Regardless of the cause, the round-trip, straight-line migration distance of 500 km is greater than that covered by wildebeest Connochaetes taurinus during their well-known seasonal journey in the Serengeti ecosystem. It merits conservation attention, given the decline of large-scale ecological processes such as animal migrations.

Recent surveys suggest tens of thousands of elephants are being poached annually across Africa, putting the two species at risk across much of their range. Although the financial motivations for ivory poaching are clear, the economic benefits of elephant conservation are poorly understood. We use Bayesian statistical modelling of tourist visits to protected areas, to quantify the lost economic benefits that poached elephants would have delivered to African countries via tourism. Our results show these figures are substantial (~USD $25 million annually), and that the lost benefits exceed the anti-poaching costs necessary to stop elephant declines across the continent’s savannah areas, although not currently in the forests of central Africa. Furthermore, elephant conservation in savannah protected areas has net positive economic returns comparable to investments in sectors such as education and infrastructure. Even from a tourism perspective alone, increased elephant conservation is therefore a wise investment by governments in these regions.

Jacquet and Delon (2016) criticize our paper “Complementary Benefits of Tourism and Hunting to Communal Conservancies in Namibia” (Naidoo et al. 2015) and argue it is flawed in several respects, to which we respond.

The US Endangered Species Act (ESA) regulates what landowners, land managers, and industry can do on lands occupied by listed species. The ESA does this in part by requiring the designation of habitat within each listed species’ range considered critical to their recovery. Critics have argued that critical habitat (CH) designation creates significant economic costs while contributing little to species recovery. Here we examine the effects of CH designation on land cover change. We find that the rate of change from 1992 to 2011 in developed (urban and residential) and agricultural land in CH areas was not significantly different compared to similar lands without CH designation, but still subject to ESA regulations. Although CH designation on average does not affect overall rates of land cover change, CH designation did slightly modify the impact of land cover change drivers. Generally, variation in land prices played a larger role in land cover decisions within CH areas than in similar areas without CH designation. These trends suggest that developers may require a greater than typical expected return to development in CH areas to compensate for the higher risk of regulatory scrutiny. Ultimately, our results bring into question the very rationale for the CH regulation. If it is for the most part not affecting land cover choices, is CH helping species recover?

Policies aimed at reducing deforestation in the Amazon basin, such as ARPA and a robustly enforced Forest Code, could have a substantial influence on the basin’s future hydropower production potential, land-use based carbon emissions, and gross economic product. We use regional models to estimate the impact that high levels of forest conservation will have on the Basin’s provision of these ecosystem services and its overall economic performance as of 2050 relative to the Basin’s delivery of these services and economic performance from a much more developed 2050 landscape. We identify three major lessons learned from our research. First, the hydropower benefits of forest conservation policies, including protected areas, are distributed unevenly across the Amazon basin due to atmospheric feedbacks. Second, these policies also have a substantial influence on regional and global carbon emissions. Finally, policymakers need to be cognizant of the substantial economic opportunity costs that conservation policies can create and how the spatial mismatch of policy costs and benefits can lead to policy failure. For example, we find that the loss in basin gross product in 2050 due to more stringent forest conservation is likely to be greater than combined value of more hydropower potential and more carbon sequestration in 2050 due to more stringent forest conservation. For Brazilians specifically the calculus is even a bit worse as carbon sequestration is a global good that accrues to most people outside of Brazil. Of course our analysis is missing the many other valuable ecosystem services than are enhanced by conservation. We would need to add these additional ecosystem service values to our cost-benefit ledger before we could begin to ascribe the full conservation-economic tradeoffs to more stringent forest conservation.

Research about ecosystem services (ES) often aims to generate knowledge that influences policies and institutions for conservation and human development. However, we have limited understanding of how decision-makers use ES knowledge or what factors facilitate use. Here we address this gap and report on, to our knowledge, the first quantitative analysis of the factors and conditions that explain the policy impact of ES knowledge. We analyze a global sample of cases where similar ES knowledge was generated and applied to decision-making. We first test whether attributes of ES knowledge themselves predict different measures of impact on decisions. We find that legitimacy of knowledge is more often associated with impact than either the credibility or salience of the knowledge. We also examine whether predictor variables related to the science-to-policy process and the contextual conditions of a case are significant in predicting impact. Our findings indicate that, although many factors are important, attributes of the knowledge and aspects of the science-to-policy process that enhance legitimacy best explain the impact of ES science on decision-making. Our results are consistent with both theory and previous qualitative assessments in suggesting that the attributes and perceptions of scientific knowledge and process within which knowledge is coproduced are important determinants of whether that knowledge leads to action.

Background:
Recent studies have shown that fragmentation is an increasing threat to global forests, which has major impacts on biodiversity and the important ecosystem services provided by forested landscapes. Several tools have been developed to evaluate global patterns of fragmentation, which have potential applications for REDD+. We study how canopy height and above ground biomass (AGB) change across several categories of forest edges determined by fragmentation analysis. We use Democratic Republic of Congo (DRC) as an example.

Results
An analysis of variance of different edge widths and airborne estimated canopy height found that canopy heights were significantly different in forest edges at a distance of 100 m from the nonforest edge. Biomass was significantly different between fragmentation classes at an edge distance of 300 m. Core forest types were found to have significantly higher canopy height and greater AGB than forest edges and patches, where height and biomass decrease significantly as the level of fragmentation increases. A change analysis shows that deforestation and degradation are increasing over time and biomass loss associated with degradation account for at least one quarter of total loss. We estimate that about 80 % of primary forests are intact, which decreases 3.5 % over the 15 year study period, as primary forest is either deforested or transitioned to forest edge. While the carbon loss per hectare is lower than that of deforestation, degradation potentially affects up to three times more area than deforestation alone. Conclusions

When defining forest degradation by decreased biomass without any loss in forest area, assessing transitions of core forest to edges over time can contribute an important element to REDD+MRV systems. The estimation of changes between different forest fragmentation types and their associated biomass loss can provide an estimate of degradation carbon emission factors. Forest degradation and emissions due to fragmentation are often underestimated and should comprise an essential component of MRV systems.

The ability of existing protected areas (PAs) to conserve freshwater species and ecosystems has been little investigated. In this study the freshwater conservation potential of PAs was evaluated based on their geospatial attributes and spatial relationship to threats. Specifically, the following questions were addressed: (a) to what extent, if any, do PA drainage network location and size affect the potential of PAs to conserve freshwater species and habitats within them?; (b) how are the factors that limit or promote conservation potential distributed in relation to PAs across a region?; and (c) what are the broader implications for how PAs can be designed and managed to contribute to freshwater conservation around the world? Eight factors that affect freshwater conservation potential for 297 PAs within the Tennessee and Cumberland River Basins (US) were analysed. Four of these attributes (connectivity, impervious surface area, agricultural land cover, and upstream storage) showed enough variation across PAs such that the effect of PA size, drainage network position, and their interaction on those attributes, was able to be modelled. The results support the hypothesis that PA drainage network location and size affect freshwater conservation potential of PAs. Both have a statistically significant effect on each of the four conservation potential attributes, either as a main effect, or through an interaction, although the direction of these relationships is not always intuitive. Of the factors that limit or promote conservation potential, PAs appear to be most often affected by land conversion to agriculture and a loss of connectivity. This study underscores the importance of PA managers understanding key internal and external threats so that they can take mitigating or minimizing action, and the need to define PA locations and boundaries within a larger basin context.

Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1?×?1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500?km2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.

Mangroves are critical in the ecological, economic and social development of coastal rural and urban communities. However, they are under threat by climate change and anthropogenic activities. The Sunda Banda Seascape (SBS), Indonesia, is among the world’s richest regions of mangrove biomass and biodiversity. To inform current and future management strategies, it is critical to provide estimates of how mangroves will respond to climate change in this region. Therefore, this paper utilized spatial analysis with model-based climatic indicators (temperature and precipitation) and mangrove distribution maps to estimate a benchmark for the mangrove biomass of the SBS in six scenarios, namely the Last Inter-glacial Period, the current scenario (1950–2000) and all four projected Representative Concentration Pathways in 2070 due to climate change. Despite mangroves gaining more biomass with climate change (the increase in CO2 concentration), this paper highlighted the great proportion of below-ground biomass in mangrove forests. It also showed that the changes in spatial distribution of mangrove biomass became more variable in the context of climate change. As mangroves have been proposed as an essential component of climate change strategies, this study can serve as a baseline for future studies and resource management strategies.

The world's most biodiverse river basins—the Amazon, Congo, and Mekong—are experiencing an unprecedented boom in construction of hydropower dams. These projects address important energy needs, but advocates often overestimate economic benefits and underestimate far-reaching effects on biodiversity and critically important fisheries. Powerful new analytical tools and high-resolution environmental data can clarify trade-offs between engineering and environmental goals and can enable governments and funding institutions to compare alternative sites for dam building. Current site-specific assessment protocols largely ignore cumulative impacts on hydrology and ecosystem services as ever more dams are constructed within a watershed (1). To achieve true sustainability, assessments of new projects must go beyond local impacts by accounting for synergies with existing dams, as well as land cover changes and likely climatic shifts (2, 3). We call for more sophisticated and holistic hydropower planning, including validation of technologies intended to mitigate environmental impacts. Should anything less be required when tampering with the world's great river ecosystems?

2015

Quasi-experimental impact evaluation approaches, which enable scholars to disentangle effects of conservation interventions from broader changes in the environment, are gaining momentum in the conservation sector. However, rigorous impact evaluation using statistical matching techniques to estimate the counterfactual have yet to be applied to marine protected areas (MPAs). While there are numerous studies investigating ‘impacts’ of MPAs that have generated considerable insights, results are variable. This variation has been linked to the biophysical and social context in which they are established, as well as attributes of management and governance. To inform decisions about MPA placement, design and implementation, we need to expand our understanding of conditions under which MPAs are likely to lead to positive outcomes by embracing advances in impact evaluation methodologies. Here, we describe the integration of impact evaluation within an MPA network monitoring programme in the Bird's Head Seascape, Indonesia. Specifically we (i) highlight the challenges of implementation ‘on the ground’ and in marine ecosystems and (ii) describe the transformation of an existing monitoring programme into a design appropriate for impact evaluation. This study offers one potential model for mainstreaming impact evaluation in the conservation sector.

How often do people visit the world’s protected areas (PAs)? Despite PAs covering one-eighth of the land and being a major focus of nature-based recreation and tourism, we don’t know. To address this, we compiled a globally-representative database of visits to PAs and built region-specific models predicting visit rates from PA size, local population size, remoteness, natural attractiveness, and national income. Applying these models to all but the very smallest of the world’s terrestrial PAs suggests that together they receive roughly 8 billion (8 x 109) visits/y—of which more than 80% are in Europe and North America. Linking our region-specific visit estimates to valuation studies indicates that these visits generate approximately US $600 billion/y in direct in-country expenditure and US $250 billion/y in consumer surplus. These figures dwarf current, typically inadequate spending on conserving PAs. Thus, even without considering the many other ecosystem services that PAs provide to people, our findings underscore calls for greatly increased investment in their conservation.

The Convention on Biological Diversity's Aichi Target 11 mandates that 17% of terrestrial and 10% of marine environments be conserved in protected areas by 2020. Such simple numeric indicators act as motivators and a measure of progress. But striving to meet the stipulated coverage should not compromise the convention's broader goal of maximizing biodiversity.

Area coverage is the only element of Target 11 that is on track, at least on land (D. P. Tittensor et al. Science 346, 241–244; 2014). Other crucial elements are effective, equitable biodiversity management; ecological representation of a mix of ecosystems; and connectivity between sites to allow species dispersal. Some species and ecosystems may be lost if implementation of these elements is delayed much longer.

Focusing on area coverage alone risks creating perverse outcomes. It encourages the proliferation of large protected areas that are under little threat, and neglects areas where protection is most needed (see go.nature.com/o5ny9j and go.nature.com/hi6qn5). If not considered in the context of other elements of Target 11, maximizing the area under protection increases the financial and political cost of meeting the same biodiversity goals. As with other global policy goals (see S. Fukuda-Parr J. Hum. Dev. Capab. 15, 118–131; 2014), the abstract global target has created unintended consequences for national conservation planning.

With negotiations beginning in 2016 for the next tranche of the convention's targets, new incentives are needed to emphasize the pivotal additional elements of Target 11.

The recent report from the Secretariat of the Convention on Biological Diversity [(2010) Global Biodiversity Outlook 3] acknowledges that ongoing biodiversity loss necessitates swift, radical action. Protecting undisturbed lands, although vital, is clearly insufficient, and the key role of unprotected, private land owned is being increasingly recognized. Seeking to avoid common assumptions of a social planner backed by government interventions, the present work focuses on the incentives of the individual landowner. We use detailed data to show that successful conservation on private land depends on three factors: conservation effectiveness (impact on target species), private costs (especially reductions in production), and private benefits (the extent to which conservation activities provide compensation, for example, by enhancing the value of remaining production). By examining the high-profile issue of palm-oil production in a major tropical biodiversity hotspot, we show that the levels of both conservation effectiveness and private costs are inherently spatial; varying the location of conservation activities can radically change both their effectiveness and private cost implications. We also use an economic choice experiment to show that consumers' willingness to pay for conservation-grade palm-oil products has the potential to incentivize private producers sufficiently to engage in conservation activities, supporting vulnerable International Union for Conservation of Nature Red Listed species. However, these incentives vary according to the scale and efficiency of production and the extent to which conservation is targeted to optimize its cost-effectiveness. Our integrated, interdisciplinary approach shows how strategies to harness the power of the market can usefully complement existing—and to-date insufficient—approaches to conservation.

The growing base of information about ecosystem services generated by ecologists, economists, and other scientists could improve the implementation, monitoring, and evaluation of commodity-sourcing standards being adopted by corporations to mitigate risk in their supply chains and achieve sustainability goals. This review examines various ways that information about ecosystem services could facilitate compliance with and auditing of commodity-sourcing standards. We also identify gaps in the current state of knowledge on the ecological effectiveness of sustainability standards and demonstrate how ecosystem-service information could complement existing monitoring efforts to build credible evidence. This paper is a call to the ecosystem-service scientists to engage in this decision context and tailor the information they are generating to the needs of the standards community, which we argue would offer greater efficiency of standards implementation for producers and enhanced effectiveness for standard scheme owners and corporations, and should thus lead to more sustainable outcomes for people and nature.

The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals.

Marine protected areas (MPAs) are increasingly employed worldwide to conserve marine resources. However, information on the role of governance mechanisms, in particular those associated with compliance, in shaping ecological condition inside MPAs at the regional scale remains deficient. An exploratory data analysis was conducted to evaluate links between strategies used to promote compliance with MPA regulations (e.g. incentives and penalties) and indicators of ecological condition, including biomass and density of commercial fish species, fish functional groups and coral cover in 21 MPAs across 13 different countries and territories in the greater Caribbean region. The strategies used to promote compliance with MPA regulations were correlated with indicators of ecological condition. For example, MPAs in which a larger number of incentives and penalties are present in the governance system are associated with higher commercial fish biomass and density as compared to those with fewer penalties and incentives available to promote compliance. Although most MPAs in the greater Caribbean use penalties to enforce compliance, these results suggest incentives may also be an important governance strategy for ensuring efficacy of protected areas in conserving key species. Alternatively, the presence of a high number of penalties and incentives in governance systems may also be indicative of greater state capacity and political will in these MPAs resulting in better managed MPAs. Further research is necessary to evaluate results of the exploratory data analysis presented in this study with a more in depth analysis of the de facto use of the regulations evaluated and their efficacy. Multi-country comparisons of MPA governance and ecological indicators can help policy and decision makers maintain MPAs that most effectively achieve MPA conservation objectives.

Ecological resilience assessments are an important part of resilience-based management (RBM) and can help prioritize and target management actions. Use of such assessments has been limited due to a lack of clear guidance on the assessment process. This study builds on the latest scientific advances in RBM to provide that guidance from a resilience assessment undertaken in the Commonwealth of the Northern Mariana Islands (CNMI). We assessed spatial variation in ecological resilience potential at 78 forereef sites near the populated islands of the CNMI: Saipan, Tinian/Aguijan, and Rota. The assessments are based on measuring indicators of resilience processes and are combined with information on anthropogenic stress and larval connectivity. We find great spatial variation in relative resilience potential with many high resilience sites near Saipan (5 of 7) and low resilience sites near Rota (7 of 9). Criteria were developed to identify priority sites for six types of management actions (e.g., conservation, land-based sources of pollution reduction, and fishery management and enforcement) and 51 of the 78 sites met at least one of the sets of criteria. The connectivity simulations developed indicate that Tinian and Aguijan are each roughly 10 × the larvae source that Rota is and twice as frequent a destination. These results may explain the lower relative resilience potential of Rota reefs and indicates that actions in Saipan and Tinian/Aguijan will be important to maintaining supply of larvae. The process we describe for undertaking resilience assessments can be tailored for use in coral reef areas globally and applied to other ecosystems.

Sustainability standards and certification serve to differentiate and provide market recognition to goods produced in accordance with social and environmental good practices, typically including practices to protect biodiversity. Such standards have seen rapid growth, including in tropical agricultural commodities such as cocoa, coffee, palm oil, soybeans, and tea. Given the role of sustainability standards in influencing land use in hotspots of biodiversity, deforestation, and agricultural intensification, much could be gained from efforts to evaluate and increase the conservation payoff of these schemes. To this end, we devised a systematic approach for monitoring and evaluating the conservation impacts of agricultural sustainability standards and for using the resulting evidence to improve the effectiveness of such standards over time. The approach is oriented around a set of hypotheses and corresponding research questions about how sustainability standards are predicted to deliver conservation benefits. These questions are addressed through data from multiple sources, including basic common information from certification audits; field monitoring of environmental outcomes at a sample of certified sites; and rigorous impact assessment research based on experimental or quasi-experimental methods. Integration of these sources can generate time-series data that are comparable across sites and regions and provide detailed portraits of the effects of sustainability standards. To implement this approach, we propose new collaborations between the conservation research community and the sustainability standards community to develop common indicators and monitoring protocols, foster data sharing and synthesis, and link research and practice more effectively. As the role of sustainability standards in tropical land-use governance continues to evolve, robust evidence on the factors contributing to effectiveness can help to ensure that such standards are designed and implemented to maximize benefits for biodiversity conservation.

Tourism and hunting both generate substantial revenues for communities and private operators in Africa, but few studies have quantitatively examined the trade-offs and synergies that may result from these two activities. We evaluated financial and in-kind benefit streams from tourism and hunting on 77 communal conservancies in Namibia from 1998 to 2013, where community-based wildlife conservation has been promoted as a land-use that complements traditional subsistence agriculture. We used data collected annually for all communal conservancies to characterize whether benefits were derived from hunting or tourism. We classified these benefits into 3 broad classes and examined how benefits flowed to stakeholders within communities under the status quo and under a simulated ban on hunting. Across all conservancies, total benefits from hunting and tourism increased at roughly the same rate, although conservancies typically started generating benefits from hunting within 3 years of formation as opposed to after 6 years for tourism. Disaggregation of data revealed that the main benefits from hunting were income for conservancy management and food in the form of meat for the community at large. The majority of tourism benefits were salaried jobs at lodges. A simulated ban on trophy hunting significantly reduced the number of conservancies that could cover their operating costs, whereas eliminating income from tourism did not have as severe an effect. Given that the benefits generated from hunting and tourism typically begin at different times in a conservancy's life-span (earlier vs. later, respectively) and flow to different segments of local communities, these 2 activities together may provide the greatest incentives for conservation on communal lands in Namibia. A singular focus on either hunting or tourism would reduce the value of wildlife as a competitive land-use option and have grave repercussions for the viability of community-based conservation efforts in Namibia, and possibly other parts of Africa.

The US Endangered Species Act (ESA) regulates what landowners and land managers can do on lands occupied by listed species. The act does this in part through the designation of habitat areas considered critical to the recovery of listed species. Critics have argued that the designation of critical habitat (CH) has substantial economic impacts on landowners above and beyond the costs associated with listing in general. Here we examine the effects of CH designation on land cover change from 1992 to 2011 in areas subject to ESA regulations. We find that, on average, the rate of change in developed land (urban and residential) and agricultural land is not significantly affected by CH designation. In addition, our estimate of the effects of CH designation is not strongly correlated with the costs of CH as predicted by economic analyses published in the Federal Register. While CH designation, on average, does not affect the overall rates of land cover change, CH designation does appear to modify the impact of land cover change drivers. Generally, land prices had more impact (statistically) on land cover decisions within CH areas than in areas subject to ESA regulations but with no CH designation. Land cover decisions in these latter areas tended to be driven more by clustering and land availability concerns. These trends suggest that CH designation has increased landowner uncertainty and that conversion to developed and agricultural use in CH areas, on average, requires a return premium. Overall, however, this different reaction to land prices in and outside of CH areas has not been strong enough to differentiate the average rates of developed or agricultural land change in CH areas versus areas subject to ESA regulations but with no CH designation.

Community-based natural resource management (CBNRM) is a major global strategy for enhancing conservation outcomes while also seeking to improve rural livelihoods; however, little evidence of socioeconomic outcomes exists. We present a national-level analysis that empirically estimates socioeconomic impacts of CBNRM across Tanzania, while systematically controlling for potential sources of bias. Specifically, we apply a difference-in-differences model to national-scale, cross-sectional data to estimate the impact of three different CBNRM governance regimes on wealth, food security and child health, considering differential impacts of CBNRM on wealthy and poor populations. We also explore whether or not longer-standing CBNRM efforts provide more benefits than recently-established CBNRM areas. Our results show significant improvements in household food security in CBNRM areas compared with non-CBNRM areas, but household wealth and health outcomes in children are generally not significantly different. No one CBNRM governance regime demonstrates consistently different welfare outcomes than the others. Wealthy households benefit more from CBNRM than poor households and CBNRM benefits appear to increase with longer periods of implementation. Perhaps evidence of CBNRM benefits is limited because CBNRM hasn’t been around long enough to yield demonstrable outcomes. Nonetheless, achieving demonstrable benefits to rural populations will be crucial for CBNRM’s future success in Tanzania.

Inclusive wealth is a measure designed to address whether society is on a sustainable development trajectory. Inclusive wealth is defined as the aggregate value of all capital assets. Increases in inclusive wealth indicate an improved productive base capable of supporting a higher standard of living in the future. To be truly inclusive, measures of inclusive wealth must include the value of all forms of capital that contribute to human well-being: human capital, manufactured capital, natural capital, and social capital. Sustainability concerns have increased attention on the ways of measuring the value of natural capital. We review various attempts to measure natural capital and to incorporate these into inclusive wealth including estimates using national wealth accounts and integrated ecological and economic models used to estimate ecosystem services. Empirically measuring the value of various types of capital in terms of a common metric is hugely challenging, and no current attempt to date can be said to be fully inclusive. Despite the empirical challenges, inclusive wealth provides a clear, coherent, and systematic framework for addressing sustainable development. Combining measures of semi-inclusive wealth that capture forms of capital that can be relatively easily measured in monetary terms with a set of biophysical metrics capturing important aspects of natural capital that are difficult to measure in monetary terms may provide a good set of signals of whether society is proceeding along a sustainable development trajectory.

Biodiversity conservation, as an environmental goal, is increasingly recognized to be connected to the socioeconomic well-being of local communities. The development of a widespread community-based natural resource management (CBNRM) program in Namibia makes it an ideal location to analyze the connection between conservation and socioeconomic well-being of local communities. Namibia’s CBNRM program involves the formation of communal conservancies within rural communities and previous studies have found it to be successful on both ecological and economic fronts. In order to broaden the understanding of the program’s impact to include social factors, we have conducted a comparative analysis to determine the effects of this program on household welfare outcomes. Data from two rounds of the Namibia Demographic and Health Surveys (2000 and 2006/07) and quasi-experimental statistical methods were used to evaluate changes in various health, education and wealth outcomes of those living in conservancies, relative to non-conservancy comparison groups. Regression results indicate mixed effects of the conservancy program at the household level. The program had positive effects on some health outcome variables, including bednet ownership, which was twice as likely to increase over time in conservancy compared to non-conservancy households. Program impacts were negative for education outcomes, with the proportion of school attendance of conservancy children being 45% less likely to increase over time than non-conservancy children. Wealth outcome results were inconclusive. Our findings highlight the importance of analyzing community conservation programs at a variety of scales when evaluating overall impact, as community-level benefits may not necessarily extend down to the household level (and vice versa).

Ecosystem Service Assessments (ESAs) have become a popular tool for science-based policy. Yet, there are few guidelines for developing an ESA to inform a decision-making process. This is an important area of inquiry since the process of conducting an ESA is likely to affect the quality of results and their influence on decisions. Drawing on the lessons of conducting ESAs around the world, we propose a set of enabling conditions and a framework for carrying out ESAs that foster high-quality results and drive action. Our framework includes an emphasis on iterative stakeholder engagement, advancing science to address policy needs, and capacity-building through six general steps: (1) scope the process, (2) collect and compile data, (3) develop scenarios, (4) analyze ecosystem services, (5) synthesize results, and (6) communicate knowledge. Our experience indicates that using this framework to conduct an ESA can generate policy-relevant science and enhance uptake of information about nature’s benefits in decisions.

While there have been rapid advances in assessments of biodiversity and ecosystem services (BES), a critical remaining challenge is how to move from scientific knowledge to real-world decision making. We offer 6 lessons from our experiences applying new approaches and tools for quantifying BES in 20 pilot demonstrations: (1) Applying a BES approach is most effective in leading to policy change as part of an iterative science-policy process; (2) simple ecological production function models have been useful in a diverse set of decision contexts, across a broad range of biophysical, social, and governance systems. Key limitations of simple models arise at very small scales, and in predicting specific future BES values; (3) training local experts in the approaches and tools is important for building local capacity, ownership, trust, and long-term success; (4) decision makers and stakeholders prefer to use a variety of BES value metrics, not only monetary values; (5) an important science gap exists in linking changes in BES to changes in livelihoods, health, cultural values, and other metrics of human wellbeing; and (6) communicating uncertainty in useful and transparent ways remains challenging.

The Sunda Banda Seascape (SBS), located in the center of the Coral Triangle, is a global center of marine biodiversity and a conservation priority. We proposed the first biophysical environmental delineation of the SBS using globally available satellite remote sensing and model-assimilated data to categorize this area into unique and meaningful biophysical classes. Specifically, the SBS was partitioned into eight biophysical classes characterized by similar sea surface temperature, chlorophyll a concentration, currents, and salinity patterns. Areas within each class were expected to have similar habitat types and ecosystem functions. Our work supplemented prevailing global marine management schemes by focusing in on a regional scale with finer spatial resolution. It also provided a baseline for academic research, ecological assessments and will facilitate marine spatial planning and conservation activities in the area. In addition, the framework and methods of delineating biophysical environments we presented can be expanded throughout the whole Coral Triangle to support research and conservation activities in this important region.

2014

To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario.

Ecosystem services have clear promise to help identify and protect priority areas for biodiversity. To leverage them effectively, practitioners must conduct timely analyses at appropriate scales, often with limited data. Here we use simple spatial analyses on readily available datasets to compare the distribution of five ecosystem services with tiger habitat in central Sumatra. We assessed services and habitat in 2008 and the changes in these variables under two future scenarios: a conservation-friendly Green Vision, and a Spatial Plan developed by the Indonesian government. In 2008, the range of tiger habitat overlapped substantially with areas of high carbon storage and sediment retention, but less with areas of high water yield and nutrient retention. Depending on service, location and spatial grain of analysis, there were both gains and losses from 2008 to each scenario; however, aggregate provision of each ecosystem service (except water yield) and total area of tiger habitat were higher in the Vision than the Plan, likely driven by an increase in forest cover in the Vision. Sub-watersheds with high levels of several ecosystem services contained substantially more tiger habitat than random subsets of sub-watersheds, suggesting that prioritizing ecosystem services could benefit tiger conservation. Our analyses provided input to government-led spatial planning and strategic environmental assessments in the study area, indicating that even under time and data constraints, policy-relevant assessments of multiple ecosystem services are feasible.

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.

Commonalities and complementarities among approaches to conservation monitoring and evaluation (M&E) are not well articulated, creating the potential for confusion, misuse, and missed opportunities to inform conservation policy and practice. We examine the relationships among five approaches to conservation M&E, characterizing each approach in eight domains: the focal question driving each approach, when in the project cycle each approach is employed, scale of data collection, the methods of data collection and analysis, the implementers of data collection and analysis, the users of M&E outputs, and the decisions informed by these outputs. Ambient monitoring measures status and change in ambient social and ecological conditions, independent of any conservation intervention. Management assessment measures management inputs, activities, and outputs, as the basis for investments to build management capacity for conservation projects. Performance measurement assesses project or program progress toward desired levels of specific activities, outputs, and outcomes. Impact evaluation is the systematic process of measuring the intended and unintended causal effects of conservation interventions, with emphasis upon long-term impacts on ecological and social conditions. Systematic review examines existing research findings to assess the state of the evidence regarding the impacts of conservation interventions, and to synthesize the insights emerging from this evidence base. Though these five approaches have some commonalities, they complement each other to provide unique insights for conservation planning, capacity-building, adaptive management, learning, and accountability. Ambient monitoring, management assessment, and performance measurement are now commonplace in conservation, but opportunities remain to inform conservation policy and practice more fully through catalytic investments in impact evaluations and systematic reviews.

The limited understanding of how ecosystem service knowledge (ESK) is used in decision making constrains our ability to learn from, replicate, and convey success stories. We explore use of ESK in decision making in three international cases: national coastal planning in Belize; regional marine spatial planning on Vancouver Island, Canada; and regional land-use planning on the island of Oahu, Hawaii. Decision makers, scientists, and stakeholders collaborated in each case to use a standardized ecosystem service accounting tool to inform spatial planning. We evaluate interview, survey, and observation data to assess evidence of ‘conceptual’, ‘strategic’, and ‘instrumental’ use of ESK. We find evidence of all modes: conceptual use dominates early planning, while strategic and instrumental uses occur iteratively in middle and late stages. Conceptual and strategic uses of ESK build understanding and compromise that facilitate instrumental use. We highlight attributes of ESK, characteristics of the process, and general conditions that appear to affect how knowledge is used. Meaningful participation, scenario development, and integration of local and traditional knowledge emerge as important for particular uses.

Most Cited Publications